INVESTIGATION OF AROMATICITY OF TRI AND TETRAAZANAPHTHALENE DERIVATIVES
DOI:
https://doi.org/10.20319/mijst.2017.32.177192Keywords:
Aromaticity, Nucleus Independent Chemical Shift, Tetraazanaphthalene, TriazanaphthaleneAbstract
Aromaticity of a compound gives important information about the possible reactions and other propeties of a molecule. In that point of view measurement of aromaticity is very important. Although there are a few applications for the determination of aromaticity, Nucleus Independent Chemical Shift calculations provide the easiest computation and best approach to the result. Naphthalene is an aromatic molecule with two fused benzene rings. It is clear that centric replacement of carbons with heteroatoms will affect the aromaticity of naphthalene. Substitution of parent carbon atoms of the ring with electronegative nitrogen atoms will decrease the aromaticity of the system. The positions of the nitrogens should also effect the aromaticity of the total system. Therefore, this work was formed by taking all the derivatives of tri and tetraazanaphthalene derivatives into consideration. In order to gain the lost aromaticity due to nitrogen substitution, ring hydrogens were substituted with electron withdrawing nitro groups
References
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Brogli, F., Heilbronner, E., Kobayashi, T. (1972). Photoelectron spectra of azabenzenes and azanaphthalenes, II. A reinvestigation of azanaphthalenes by high-resolution photoelectron spectroscopy. Helv. Chim. Acta 55, 274-288. https://doi.org/10.1002/hlca.19720550131
Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., Schleyer, P.R. (2002). To What Extent Can Aromaticity Be Defined Uniquely? J. Org. Chem. 67, 1333-1338. https://doi.org/10.1021/jo016255s
Frisch et al., M.J. Gaussian 09, Gaussian Inc., Wallingford, CT, 2010.
Ghiasi, R. (2005). The mono- and di-silanaphthalene: structure, properties, and aromaticity. J. Mol. Struct. (Theochem) 718, 225-233. https://doi.org/10.1016/j.theochem.2004.11.038
Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ. 74, 132-136. https://doi.org/10.1021/ed074p132
Gümüş, S. (2011). The aromaticity of substituted diazanaphthalenes. Comput. Theor. Chem. 963, 263-267. https://doi.org/10.1016/j.comptc.2010.10.026
Gümüş, S. (2011). A computational study on substituted diazabenzenes. Turk. J. Chem. 35, 803-808.
Hehre, W.J., Radom, L., Schleyer, P.R., Pople, J.A. Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
Heinis, T., Chowdhury, S., Kebarle, P. (1993). Electron Affinities of Naphthalene, Anthracene and Substituted Naphthalenes and Anthracenes. Org. Mass Spectrom. 28, 358-365. https://doi.org/10.1002/oms.1210280416
Jiao, H., Schleyer, P.R. (1998). Aromaticity of pericyclic reaction transition structures: magnetic evidence. J. Phys. Org. Chem. 111, 655-662. https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.3.CO;2-L https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U
Kaim, W., Tesmann, H., Bock, H. (1980). Me3C-, Me3Si-, Me3Ge-, Me3Sn- und Me3Pb-substituierte benzol- und naphthalin-derivate und ihre radikalanionen. Chem. Ber. 113. 3221-3234. https://doi.org/10.1002/cber.19801131010
Kitagawa, T. (1968). Stark Spectroscopy of Molecular Crystals. J. Mol. Spectrosc. 26, 1-23. https://doi.org/10.1016/0022-2852(68)90139-2
Klasinc, L., Kovac, B., Gusten, H. (1983). Photoelectron spectra of acenes. Electronic structure and substituent effects. Pure Appl. Chem. 55, 289-298. https://doi.org/10.1351/pac198855020289
Kohn, W., Sham, L.J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., Katritzky, A.R. (2000). Aromaticity: a Theoretical Concept of Immense Practical Importance. Tetrahedron 56, 1783-1796. https://doi.org/10.1016/S0040-4020(99)00979-5
Lardin, H.A., Squires, R.R., Wenthold, P.G. (2001). Determination of the electron affinities of alpha- and beta- naphthyl radicals using the kinetic method with full entropy analysis. The C-H bond dissociation energies of naphthalene. J. Mass Spectrom. 36, 607-615. https://doi.org/10.1002/jms.159
Leach, A.R. Molecular Modelling, Longman, Essex, 1997.
Lee, C., Yang, W., Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
Meot-Ner, M., Liebman, J.F., Kafafi, S.A. (1988). Ionic Probes of Aromaticity in Annelated Rings. J. Am. Chem. Soc. 110, 5937-5941. https://doi.org/10.1021/ja00226a001
Meylan, W.M., Howard, P.H. (1991). Bond contribution method for estimating Henry's law constants. Environ. Toxicol. Chem. 10, 1283-1293. https://doi.org/10.1002/etc.5620101007
Minkin, V.I., Glukhovtsev, M.N., Simkin, B.Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects, New York, Wiley, 1994.
Parr, R.G., Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, London, 1989.
Patchkovskii, S., Thiel, W. (2002). Nucleus–Independent Chemical Shifts from Semiempirical Calculations. J. Mol. Model. 6, 67-75. https://doi.org/10.1007/PL00010736
Pulay, P., Hinton, J.F., Wolinski, K. Nuclear magnetic shieldings and molecular structure, in: Tossel, J.A. (Ed.), NATO ASI Series C, vol. 386, Kluwer, The Netherlands, 1993. pp. 243.
Quinonero, D., Garau, C., Frontera, A., Ballester, P., Costa, A., Deya, P.M. (2002). Quantification of aromaticity in oxocarbons: the problem of the fictitious “nonaromatic” reference system. Chem. Eur. J. 8, 433-438. https://doi.org/10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.3.CO;2-K https://doi.org/10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.0.CO;2-T
Schafer, W., Schweig, A., Markl, G., Heier, K.H. (1973). Zur elektronenstruktur der λ3- und λ5-phosphanaphthaline - ungewöhnlich grosse mo destabilisierungen. Tetrahedron Lett. 3743-3746. https://doi.org/10.1016/S0040-4039(01)87025-8
Schafer, W., Schweig, A., Vermeer, H., Bickelhaupt, F., Graaf, H.D. (1975). On the nature of the “free electron pair” on phosphorus in aromatic phosphorus compounds: The photoelectron spectrum of 2-phosphanaphthalene. J. Electron Spectrosc. Relat. Phenom. 6, 91-98. https://doi.org/10.1016/0368-2048(75)80001-6
Schiedt, J., Knott, W.J., Barbu, K.L., Schlag, E.W., Weinkauf, R. (2000). Microsolvation of similar-sized aromatic molecules: Photoelectron spectroscopy of bithiophene–, azulene–, and naphthalene–water anion clusters. J. Chem. Phys. 113, 9470-9478. https://doi.org/10.1063/1.1319874
Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev. 101, 1115-1118. https://doi.org/10.1021/cr0103221
Schleyer, P.R., Jiao, H. (1996). What is aromaticity? Pure Appl. Chem. 68, 209-218. https://doi.org/10.1351/pac199668020209
Schleyer, P.R., Kiran, B., Simion, D.V., Sorensen, T.S. (2000). Does Cr(CO)3 complexation reduce the aromaticity of benzene? J. Am. Chem. Soc. 122, 510-513. https://doi.org/10.1021/ja9921423
Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317-6318. https://doi.org/10.1021/ja960582d
Scuseria, G.E. (1992). Comparison of coupled-cluster results with a hybrid of Hartree–Fock and density functional theory. J. Chem. Phys. 97, 7528-7530. https://doi.org/10.1063/1.463977
Song, J.K., Han, S.Y., Chu, I.H., Kim, J.H., Kim, S.K., Lyapustina, S.A., Xu, S.J., Nilles, J.M., Bowen, K.H. (2002). Photoelectron spectroscopy of naphthalene cluster anions. J.Chem. Phys. 116, 4477-4481. https://doi.org/10.1063/1.1449869
Sosa, C., Lee, C. (1993). Density functional description of transition structures using nonlocal corrections. Silylene insertion reactions into the hydrogen molecule. J. Chem. Phys. 98, 8004-8011. https://doi.org/10.1063/1.464554
Spedaletti, C.A., Estrada, M.R., Zamarbide, G.N., Garro, J.C., Ponce, C.A., Vert, F.T. (2005). Theoretical study on hydration of two particular diazanaphthalenes. J. Mol. Struct. (Theochem) 723, 211-216. https://doi.org/10.1016/j.theochem.2004.12.042
Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 10, 209-220. https://doi.org/10.1002/jcc.540100208 https://doi.org/10.1002/jcc.540100209
Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods. 2. Applications. J. Comput. Chem. 10, 221-264. https://doi.org/10.1002/jcc.540100209
Takeda, N., Shinohara, A., Tokitoh, N. (2002). Synthesis and Properties of the First 1-Silanaphthalene. Organometallics 21, 4024-4026. https://doi.org/10.1021/om0205041
Vosko, S.H., Vilk, L., Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200-1211. https://doi.org/10.1139/p80-159
Wang, L., Wang, H. (2007). Planar mono-, di- aza- and phospha-naphthalene: Structure and aromaticity. Int. J. Quantum Chem. 107, 1846-1855. https://doi.org/10.1002/qua.21325
Wilson, P.J., Amos, R.D., Handy, N.C. (2000). Density functional predictions for metal and ligand nuclear shielding constants in diamagnetic closed-shell first-row transition-metal complexes. Phys. Chem. Chem. Phys. 2, 187-194. https://doi.org/10.1039/a907167i
Yencha, A.J., El-Sayed, M.A. (1968). Lowest ionization potentials of some nitrogen heterocyclics. J. Chem. Phys. 48, 3469-3475. https://doi.org/10.1063/1.1669640
Downloads
Published
How to Cite
Issue
Section
License
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.