INVESTIGATION OF AROMATICITY OF TRI AND TETRAAZANAPHTHALENE DERIVATIVES

Authors

  • Selçuk Gümüş Yuzuncu Yil University, Faculty of Science, Department of Chemistry, 65080, Van, Turkey
  • Ayşegül Gümüş Yuzuncu Yil University, Faculty of Science, Department of Chemistry, 65080, Van, Turkey
  • Mehmet Avcı Yuzuncu Yil University, Faculty of Science, Department of Chemistry, 65080, Van, Turkey

DOI:

https://doi.org/10.20319/mijst.2017.32.177192

Keywords:

Aromaticity, Nucleus Independent Chemical Shift, Tetraazanaphthalene, Triazanaphthalene

Abstract

Aromaticity of a compound gives important information about the possible reactions and other propeties of a molecule. In that point of view measurement of aromaticity is very important. Although there are a few applications for the determination of aromaticity, Nucleus Independent Chemical Shift calculations provide the easiest computation and best approach to the result. Naphthalene is an aromatic molecule with two fused benzene rings. It is clear that centric replacement of carbons with heteroatoms will affect the aromaticity of naphthalene. Substitution of parent carbon atoms of the ring with electronegative nitrogen atoms will decrease the aromaticity of the system. The positions of the nitrogens should also effect the aromaticity of the total system. Therefore, this work was formed by taking all the derivatives of tri and tetraazanaphthalene derivatives into consideration. In order to gain the lost aromaticity due to nitrogen substitution, ring hydrogens were substituted with electron withdrawing nitro groups

References

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Brogli, F., Heilbronner, E., Kobayashi, T. (1972). Photoelectron spectra of azabenzenes and azanaphthalenes, II. A reinvestigation of azanaphthalenes by high-resolution photoelectron spectroscopy. Helv. Chim. Acta 55, 274-288. https://doi.org/10.1002/hlca.19720550131

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., Schleyer, P.R. (2002). To What Extent Can Aromaticity Be Defined Uniquely? J. Org. Chem. 67, 1333-1338. https://doi.org/10.1021/jo016255s

Frisch et al., M.J. Gaussian 09, Gaussian Inc., Wallingford, CT, 2010.

Ghiasi, R. (2005). The mono- and di-silanaphthalene: structure, properties, and aromaticity. J. Mol. Struct. (Theochem) 718, 225-233. https://doi.org/10.1016/j.theochem.2004.11.038

Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ. 74, 132-136. https://doi.org/10.1021/ed074p132

Gümüş, S. (2011). The aromaticity of substituted diazanaphthalenes. Comput. Theor. Chem. 963, 263-267. https://doi.org/10.1016/j.comptc.2010.10.026

Gümüş, S. (2011). A computational study on substituted diazabenzenes. Turk. J. Chem. 35, 803-808.

Hehre, W.J., Radom, L., Schleyer, P.R., Pople, J.A. Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

Heinis, T., Chowdhury, S., Kebarle, P. (1993). Electron Affinities of Naphthalene, Anthracene and Substituted Naphthalenes and Anthracenes. Org. Mass Spectrom. 28, 358-365. https://doi.org/10.1002/oms.1210280416

Jiao, H., Schleyer, P.R. (1998). Aromaticity of pericyclic reaction transition structures: magnetic evidence. J. Phys. Org. Chem. 111, 655-662. https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.3.CO;2-L https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U

Kaim, W., Tesmann, H., Bock, H. (1980). Me3C-, Me3Si-, Me3Ge-, Me3Sn- und Me3Pb-substituierte benzol- und naphthalin-derivate und ihre radikalanionen. Chem. Ber. 113. 3221-3234. https://doi.org/10.1002/cber.19801131010

Kitagawa, T. (1968). Stark Spectroscopy of Molecular Crystals. J. Mol. Spectrosc. 26, 1-23. https://doi.org/10.1016/0022-2852(68)90139-2

Klasinc, L., Kovac, B., Gusten, H. (1983). Photoelectron spectra of acenes. Electronic structure and substituent effects. Pure Appl. Chem. 55, 289-298. https://doi.org/10.1351/pac198855020289

Kohn, W., Sham, L.J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., Katritzky, A.R. (2000). Aromaticity: a Theoretical Concept of Immense Practical Importance. Tetrahedron 56, 1783-1796. https://doi.org/10.1016/S0040-4020(99)00979-5

Lardin, H.A., Squires, R.R., Wenthold, P.G. (2001). Determination of the electron affinities of alpha- and beta- naphthyl radicals using the kinetic method with full entropy analysis. The C-H bond dissociation energies of naphthalene. J. Mass Spectrom. 36, 607-615. https://doi.org/10.1002/jms.159

Leach, A.R. Molecular Modelling, Longman, Essex, 1997.

Lee, C., Yang, W., Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

Meot-Ner, M., Liebman, J.F., Kafafi, S.A. (1988). Ionic Probes of Aromaticity in Annelated Rings. J. Am. Chem. Soc. 110, 5937-5941. https://doi.org/10.1021/ja00226a001

Meylan, W.M., Howard, P.H. (1991). Bond contribution method for estimating Henry's law constants. Environ. Toxicol. Chem. 10, 1283-1293. https://doi.org/10.1002/etc.5620101007

Minkin, V.I., Glukhovtsev, M.N., Simkin, B.Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects, New York, Wiley, 1994.

Parr, R.G., Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, London, 1989.

Patchkovskii, S., Thiel, W. (2002). Nucleus–Independent Chemical Shifts from Semiempirical Calculations. J. Mol. Model. 6, 67-75. https://doi.org/10.1007/PL00010736

Pulay, P., Hinton, J.F., Wolinski, K. Nuclear magnetic shieldings and molecular structure, in: Tossel, J.A. (Ed.), NATO ASI Series C, vol. 386, Kluwer, The Netherlands, 1993. pp. 243.

Quinonero, D., Garau, C., Frontera, A., Ballester, P., Costa, A., Deya, P.M. (2002). Quantification of aromaticity in oxocarbons: the problem of the fictitious “nonaromatic” reference system. Chem. Eur. J. 8, 433-438. https://doi.org/10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.3.CO;2-K https://doi.org/10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.0.CO;2-T

Schafer, W., Schweig, A., Markl, G., Heier, K.H. (1973). Zur elektronenstruktur der λ3- und λ5-phosphanaphthaline - ungewöhnlich grosse mo destabilisierungen. Tetrahedron Lett. 3743-3746. https://doi.org/10.1016/S0040-4039(01)87025-8

Schafer, W., Schweig, A., Vermeer, H., Bickelhaupt, F., Graaf, H.D. (1975). On the nature of the “free electron pair” on phosphorus in aromatic phosphorus compounds: The photoelectron spectrum of 2-phosphanaphthalene. J. Electron Spectrosc. Relat. Phenom. 6, 91-98. https://doi.org/10.1016/0368-2048(75)80001-6

Schiedt, J., Knott, W.J., Barbu, K.L., Schlag, E.W., Weinkauf, R. (2000). Microsolvation of similar-sized aromatic molecules: Photoelectron spectroscopy of bithiophene–, azulene–, and naphthalene–water anion clusters. J. Chem. Phys. 113, 9470-9478. https://doi.org/10.1063/1.1319874

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev. 101, 1115-1118. https://doi.org/10.1021/cr0103221

Schleyer, P.R., Jiao, H. (1996). What is aromaticity? Pure Appl. Chem. 68, 209-218. https://doi.org/10.1351/pac199668020209

Schleyer, P.R., Kiran, B., Simion, D.V., Sorensen, T.S. (2000). Does Cr(CO)3 complexation reduce the aromaticity of benzene? J. Am. Chem. Soc. 122, 510-513. https://doi.org/10.1021/ja9921423

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317-6318. https://doi.org/10.1021/ja960582d

Scuseria, G.E. (1992). Comparison of coupled-cluster results with a hybrid of Hartree–Fock and density functional theory. J. Chem. Phys. 97, 7528-7530. https://doi.org/10.1063/1.463977

Song, J.K., Han, S.Y., Chu, I.H., Kim, J.H., Kim, S.K., Lyapustina, S.A., Xu, S.J., Nilles, J.M., Bowen, K.H. (2002). Photoelectron spectroscopy of naphthalene cluster anions. J.Chem. Phys. 116, 4477-4481. https://doi.org/10.1063/1.1449869

Sosa, C., Lee, C. (1993). Density functional description of transition structures using nonlocal corrections. Silylene insertion reactions into the hydrogen molecule. J. Chem. Phys. 98, 8004-8011. https://doi.org/10.1063/1.464554

Spedaletti, C.A., Estrada, M.R., Zamarbide, G.N., Garro, J.C., Ponce, C.A., Vert, F.T. (2005). Theoretical study on hydration of two particular diazanaphthalenes. J. Mol. Struct. (Theochem) 723, 211-216. https://doi.org/10.1016/j.theochem.2004.12.042

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 10, 209-220. https://doi.org/10.1002/jcc.540100208 https://doi.org/10.1002/jcc.540100209

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods. 2. Applications. J. Comput. Chem. 10, 221-264. https://doi.org/10.1002/jcc.540100209

Takeda, N., Shinohara, A., Tokitoh, N. (2002). Synthesis and Properties of the First 1-Silanaphthalene. Organometallics 21, 4024-4026. https://doi.org/10.1021/om0205041

Vosko, S.H., Vilk, L., Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200-1211. https://doi.org/10.1139/p80-159

Wang, L., Wang, H. (2007). Planar mono-, di- aza- and phospha-naphthalene: Structure and aromaticity. Int. J. Quantum Chem. 107, 1846-1855. https://doi.org/10.1002/qua.21325

Wilson, P.J., Amos, R.D., Handy, N.C. (2000). Density functional predictions for metal and ligand nuclear shielding constants in diamagnetic closed-shell first-row transition-metal complexes. Phys. Chem. Chem. Phys. 2, 187-194. https://doi.org/10.1039/a907167i

Yencha, A.J., El-Sayed, M.A. (1968). Lowest ionization potentials of some nitrogen heterocyclics. J. Chem. Phys. 48, 3469-3475. https://doi.org/10.1063/1.1669640

Downloads

Published

2017-09-18

How to Cite

Gümüş, S., Gümüş, A., & Avcı, M. (2017). INVESTIGATION OF AROMATICITY OF TRI AND TETRAAZANAPHTHALENE DERIVATIVES . MATTER: International Journal of Science and Technology, 3(2), 177–192. https://doi.org/10.20319/mijst.2017.32.177192