SYNTHESIS AND COMPUTATIONAL CALCULATIONS OF NOVEL CHIRAL BIS-1,2,3-TRIAZOLE DERIVATIVES
DOI:
https://doi.org/10.20319/mijst.2017.32.165176Keywords:
Enzymatic Resolution, 1, 2, 3-Triazoles, Benzofuran, Benzothiophene, One-Pot ReactionAbstract
The one-pot synthesis of novel bis-1,2,3-triazole derivatives from homopropargyl alcohol backbones is described. The key intermediates chiral 2-benzothiophenyl (-)-1 and 2-benzofuranyl (-)-2 substituted homopropargyl alcohols are synthesized from their corresponding carboxyaldehyde derivatives by O-propargylation and enzymatic resolution. Enantiomerically enriched homopropargyl alcohol derivatives are reacted with diiodo benzene and sodium azide via one-pot synthesis method and novel chiral bis-benzofuranyltriazole (-)-3 and bis-benzothiophenyltriazole (-)-4 are constructed without isolation of potentially toxic and unstable organic azide intermediates.
References
Androsov, D. A., Solovyev, A. Y., Petrov, M. L., Butcher, R. J. & Jasinski, J. P. (2010). A convenient approach towards 2- and 3-aminobenzo[b]thiophenes. Tetrahedron, 66, 2474–2485. https://doi.org/10.1016/j.tet.2010.01.069
Appukkuttan, P., Dehaen, W., Fokin, V. V. & der Eycken, E. V. (2004). A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org. Lett. 6, 4223–4225. https://doi.org/10.1021/ol048341v
Bayrak, H., Demirbaş, A., Demirbaş, N. & Karaoğlu, S. A. (2009). Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities. Eur. J. Med. Chem. 44, 4362–4366. https://doi.org/10.1016/j.ejmech.2009.05.022 https://doi.org/10.1016/j.ejmech.2008.06.019
Büyükadalı, N. N., Seven, S., Aslan, N., Yenidede, D. & Gümüş, A. (2015). Chemoenzymatic synthesis of novel 1,4-disubstituted 1,2,3-triazole derivatives from 2-heteroaryl substituted homopropargyl alcohols. Tetrahedron-Asymm. 26, 1285-1291. https://doi.org/10.1016/j.tetasy.2015.10.001
Casida, M.E., Jamorski, C., Casida, K.C. & Salahub, D.R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 109, 4439-4448. https://doi.org/10.1063/1.475855
Chaudhary, P. M., Chavan, S. R., Shirazi, F., Razdan, M., Nimkar, P., Maybhate, S. P., Likhite, A. P., Gonnade, R., Hazara, B. G. & Deshpande, S. R. (2009). Exploration of click reaction for the synthesis of modified nucleosides as chitin synthase inhibitors. Bioorg. Med. Chem. Lett. 17, 2433–2440. https://doi.org/10.1016/j.bmc.2009.02.019
Dit Chabert, J. F., Marquez, B., Neville, L., Joucla, L., Broussous, S. & Bouhours, P. (2007). Synthesis and evaluation of new arylbenzo[b]thiophene and diarylthiophene derivatives as inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Bioorg. Med. Chem. 15, 4482–4497. https://doi.org/10.1016/j.bmc.2007.04.023
Dondoni, A. & Marra, A. (2006). “Click chemistry” inspired synthesis of pseudo-oligosaccharides and amino acid glycoconjugates. J. Org. Chem. 71, 364–367. https://doi.org/10.1021/jo051731q
Esvaran, S., Adhikari, A. V. & Shetty, N. S. (2009). Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur. J. Med. Chem. 44, 4637–4647. https://doi.org/10.1016/j.ejmech.2009.06.031
Feldman, A. K., Colasson, B. & Fokin, V. V. (2004). One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. Org. Lett. 6, 3897–3899. https://doi.org/10.1021/ol048859z
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. Gaussian 09. Wallingford, CT, Gaussian Inc., 2009.
Guo, H.F., Shao, H.Y., Yang, Z.Y., Xue, S:T., Li, X., Liu, Z.Y., He, X.B., Jiang, J.D., Zhang, Y.Q., Si, S.Y. & Li, Z.R. (2010). Substituted Benzothiophene or Benzofuran Derivatives as a Novel Class of Bone Morphogenetic Protein-2 Up-Regulators: Synthesis, Structure−Activity Relationships, and Preventive Bone Loss Efficacies in Senescence Accelerated Mice (SAMP6) and Ovariectomized Rats. J. Med. Chem. 53, 1819–1829. https://doi.org/10.1021/jm901685n
Guruprasad, B. V. & Mruthyunjayaswamy, B. H. M. (2012). Synthesis and antimicrobial activity of some new 3-chloro-6-substituted-N-(substituted 2H-[1,3]oxazino[6,5-b]quinolin-3-(4H,5aH,9aH)-yl) benzo[b]thiophene-2-carboxamides. Ind. J. Chem. 51B, 514– 520. https://doi.org/10.1002/chin.201229187
Ho, Y. S., Duh, J. S., Jeng, J. H., Wang, Y. J., Liang, Y., Lin, C. H., Tseng, C. J., Yu, C. F., Chen, R. J. & Lin, J. K. (2001). Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cellsInt. J. Cancer, 91, 393–401. https://doi.org/10.1002/1097-0215(200002)9999:9999<::AID-IJC1070>3.0.CO;2-#
Hoang, D. M., Ngoc, T. M. Dat, N. T., Ha, D. T., Kim, Y. H., Luong, H. V., Ahn, J. S. & Bae, K. (2009). Protein Tyrosine Phosphatase 1B Inhibitors Isolated From Morus Bombycis. Bioorg. Med. Chem. Lett. 19, 6759–6761. https://doi.org/10.1016/j.bmcl.2009.09.102
Kacprzak, K. (2005). Efficient one-pot synthesis of 1,2,3-triazoles from benzyl and alkyl halides. Synlett, 6, 943–946. https://doi.org/10.1055/s-2005-864809
Kategaonkar, A. H., Shinde, P. V., Pasale, S. K., Shingate, B. B. & Shingare, M. S. (2010). Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives via click chemistry approach. Eur. J. Med. Chem. 45, 3142–3146. https://doi.org/10.1016/j.ejmech.2010.04.002
Kumar, S. S. & Kavitha, H. P. (2013). Synthesis and biological applications of triazole derivatives. Mini-Rev. Org. Chem. 10, 40–65. https://doi.org/10.2174/1570193X11310010004
Mahdavi, M., Akbarzadeh, T., Sheibani, V., Abbasi, M., Firoozpour, L., Tabatabai, S. A., Shafiee, A. & Foroumadi, A. (2010). Synthesis of two novel 3-amino-5-[4-chloro-2-phenoxyphenyl]-4H-1,2,4-triazoles with anticonvulsant activity. Iran J. Pharm. Res. 9, 265–269.
Marquès, S., Buchet, R., Popowycz, F., Lemaire, M. & Mebarek, S. (2016). Synthesis of benzofuran derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase: effects on cell toxicity and osteoblast-induced mineralization. Bioorg. Med. Chem. Lett. 26, 1457–1459. https://doi.org/10.1016/j.bmcl.2016.01.061
Moses, J. E. & Moorhouse, A. D. (2007). Chem. Soc. Rev. The growing applications of click chemistry. 36, 1249-3015.
Nikitina, I. L., Gabidullin, R. A., Klen, E. E., Tyurina, L. A., Alekhin, E. K. & Khaliullin, F. A. (2012). Computer analysis of the structure-antidepressant activity relationship in series of 1,2,4-triazole and thietane-1,1-dioxide derivatives. Pharm. Chem. J. 46, 213–218. https://doi.org/10.1007/s11094-012-0764-6
Odlo, K., Hoydahl, E. A. & Hansen, T. V. (2007). One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from terminal acetylenes and in situ generated azides. Tetrahedron Lett. 48, 2097–2099. https://doi.org/10.1016/j.tetlet.2007.01.130
Owen, C. P., Dhanani, S., Patel, C. H. & Ahmed, S. Synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a series of 4-substituted phenyl alkyl triazole-based compounds as potential inhibitors of 17a-hydroxylase/17,20- Lyase (P45017a). Lett. Drug Design Discov. 42, 479–483. https://doi.org/10.2174/157018007781788471
Plech, T., Luszczki, J. J., Wujec, M., Flieger, J. & Pizon, M. (2013). Synthesis, characterization and preliminary anticonvulsant evaluation of some 4-alkyl-1,2,4-triazoles. Eur. J. Med. Chem. 60, 208–215. https://doi.org/10.1016/j.ejmech.2012.11.026
Queiroz, M. J., Ferreira, I. C., De Gaetano, Y., Kirsch, G., Calhelha, R. C. & Estevinho, L. M. (2006). Synthesis and antimicrobial activity studies of ortho-chlorodiarylamines and heteroaromatic tetracyclic systems in the benzo[b]thiophene series. Bioorg. Med. Chem. 14, 6827–6831. https://doi.org/10.1016/j.bmc.2006.06.035
Radhika, C., Venkatesham, A. & Sarangapani, M. (2012). Synthesis and antidepressant activity of disubstituted-5-aryl-1,2,4-triazoles. Med. Chem. Res. 21, 3509–3513. https://doi.org/10.1007/s00044-011-9902-z
Seo, T. S., Li, Z., Ruparel, H. & Lu, J. (2003). Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. J. Org. Chem. 68, 609–612. https://doi.org/10.1021/jo026615r
Shamsuzzaman, H.K. (2015). Bioactive Benzofuran derivatives: A review. Eur. J. Med. Chem. 97, 483-504. https://doi.org/10.1016/j.ejmech.2014.11.039
Sharpless, K. B., Rostovtsev, V. V., Green, L. G. & Fokin, V. V. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew.Chem. Int. Ed. 2596-2599.
Sivakumar, K., Xie, F., Cash, B. M., Long, S. & Barnhill, H. N. A (2004). Fluorogenic 1,3-dipolar cycloaddition reaction of 3- azidocoumarins and acetylenes. Org. Lett. 6, 4603–4606. https://doi.org/10.1021/ol047955x
Zhou, J. P., Zhang, H. B., Qian, H., Lin, L., Huang, W. L. & Ni, S. J. (2009). Synthesis and biological evaluation of aromatase inhibitors. Lett. Drug Design Discov. 6, 181–185. https://doi.org/10.2174/157018009787847846
Downloads
Published
How to Cite
Issue
Section
License
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.