STRAIN GAUGE TESTING OF 3D-PRINTED CFRP SANDWICH STRUCTURE

Received: 02nd August 2023 Revised: 18th July 2023, 22nd December 2023, 29th December 2023, 16th January 2024, 29th January 2024 Accepted: 03rd August 2023

Authors

  • Paweł Żur Department of Engineering Processes Automation And Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Alicja Żur Department of Engineering Processes Automation And Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Piotr Michalski Department of Engineering Processes Automation And Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Andrzej Baier Department of Engineering Processes Automation And Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland

DOI:

https://doi.org/10.20319/mijst.2024.10.4874

Keywords:

3D Printing, Carbon Fiber, CFRP Composite, Sandwich Structure, Strain Gauge Testing

Abstract

In this article, the authors present composite sandwich-type CFRP structures and a study of their properties by strain gauge testing. The paper presents the modeling of a parameterized elementary unit serving as the core of a 3D printed structure using Fused Deposition Modelling (FDM) technology. The properties of these structures with different outer layers made of pure epoxy resin and resin with 10% and 20% carbon fiber powder were then investigated. Based on the results of the strain gauge tests, material models were reconstructed for each resin layer, which can be used in computer FEM studies of more complex components. As an application example, a strength analysis of the driver's seat of a Greenpower car made with printed sandwich structures coated with carbon fiber powder resin was conducted.

References

Alshaer, A. W., & Harland, D. J. An investigation of the strength and stiffness of weight-saving sandwich beams with CFRP face sheets and seven 3D printed cores. Composite Structures, 2021, 257, 113391. https://doi.org/10.1016/j.compstruct.2020.113391

Audibert, C., Chaves-Jacob, J., Linares, J. M., & Lopez, Q. A. Bio-inspired method based on bone architecture to optimize the structure of mechanical workspieces. Materials & Design, 2018, 160, 708-717. https://doi.org/10.1016/j.matdes.2018.10.013

Baier, A., Zur, P., Kolodziej, A., Konopka, P., & Komander, M. Studies on optimization of 3D-printed elements applied in Silesian Greenpower vehicle. In IOP Conference Series: Materials Science and Engineering, 2018, 400(2), 022010. https://doi.org/10.1088/1757-899X/400/2/022010

Bodaghi, M., Serjouei, A., Zolfagharian, A., Fotouhi, M., Rahman, H., & Durand, D. Reversible energy absorbing meta-sandwiches by FDM 4D printing. International Journal of Mechanical Sciences, 2020, 173, 105451. https://doi.org/10.1016/j.ijmecsci.2020.105451

Dey, A., & Yodo, N. A systematic survey of FDM process parameter optimization and their influence on part characteris-tics. Journal of Manufacturing and Materials Processing, 2019, 3(3), 64. https://doi.org/10.3390/jmmp3030064

Dudek, P. F. D. M. FDM 3D printing technology in manufacturing composite elements. Archives of metallurgy and materials, 2013, 58(4), 1415-1418. https://doi.org/10.2478/amm-2013-0186

Dudescu, C., & Racz, L. Effects of raster orientation, infill rate and infill pattern on the mechanical properties of 3D printed materials. ACTA Univ. Cibiniensis, 2017, 69(1), 23-30. https://doi.org/10.1515/aucts-2017-0004

Fernandez-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D printing and additive manufacturing, 2016, 3(3), 183-192. https://doi.org/10.1089/3dp.2015.0036

Fiał, C., & Pieknik, M. Druk 3D jako technologia przyszłości–część 1. Technologia i Jakość Wyrobów, 2020, 65.

Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., & Arias, A. Design of FDM 3D printed polymers: An experi-mental-modelling methodology for the prediction of mechanical properties. Materials & Design, 2020, 188, 108414. https://doi.org/10.1016/j.matdes.2019.108414

Hao W., Liu Y., Zhou, Chen H. H., Fang D.: Preparation and characterization of 3D printed continuous carbon fiber rein-forced thermosetting composite, Polymer Testing 65, 2018, p. 29-34. https://doi.org/10.1016/j.polymertesting.2017.11.004

Hu, T., Wang, J., Wang, J., & Chen, R. Electromagnetic interference shielding properties of carbonyl iron powder-carbon fiber felt/epoxy resin composites with different layer angle. Materials Letters, 2015, 142, 242-245. https://doi.org/10.1016/j.matlet.2014.12.026

Khosravani, M. R., Zolfagharian, A., Jennings, M., & Reinicke, T. Structural performance of 3D-printed composites under various loads and environmental conditions. Polymer testing, 2020, 91, 106770. https://doi.org/10.1016/j.polymertesting.2020.106770

Kołodziej, A.; Żur, P.; Borek, W. Influence of 3D-printing Parameters on Mechanical Properties of PLA defined in the Static Bending Test. Eur. J. Eng. Sci. Technol. 2019, 2, 65–70.

Kowalewski Z., Szymczak T., Podstawy tensometrii elektrooporowej oraz praktyczne jej zastosowania, Dziewiętnaste Se-minarium Nieniszczące Badania Materiałów Zakopane, Poland, 12-13 March 2013

Kwon, D. J., Kim, J. H., DeVries, K. L., & Park, J. M. Optimized epoxy foam interface of CFRP/Epoxy Foam/CFRP sandwich composites for improving compressive and impact properties. Journal of Materials Research and Technology, 2021, 11, 62-71. https://doi.org/10.1016/j.jmrt.2021.01.015

Lalegani Dezaki, M., & Mohd Ariffin, M. K. A. The effects of combined infill patterns on mechanical properties in FDM process. Polymers, 2020, 12(12), 2792. https://doi.org/10.3390/polym12122792

Lionetto, F., Moscatello, A., & Maffezzoli, A. Effect of binder powders added to carbon fiber reinforcements on the chemoreology of an epoxy resin for composites. Composites Part B: Engineering, 2017, 112, 243-250. https://doi.org/10.1016/j.compositesb.2016.12.031

Liu, Z., Lei, Q., & Xing, S. Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. Journal of Materials Research and Technology, 2019, 8(5), 3741-3751. https://doi.org/10.1016/j.jmrt.2019.06.034

Lubombo, C., & Huneault, M. A. Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts. Materials Today Communications, 2018, 17, 214-228. https://doi.org/10.1016/j.mtcomm.2018.09.017

Mazzanti, V., Malagutti, L., & Mollica, F. FDM 3D printing of polymers containing natural fillers: A review of their mechan-ical properties. Polymers, 2019, 11(7), 1094. https://doi.org/10.3390/polym11071094

Mei, J., Liu, J., & Huang, W. Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling. Composite Structures, 2022, 284, 115206. https://doi.org/10.1016/j.compstruct.2022.115206

Mei, J., Tan, P. J., Bosi, F., Zhang, T., Liu, J. Y., Wang, B., & Huang, W. Fabrication and mechanical characterization of CFRP X-core sandwich panels. Thin-Walled Structures, 2021, 158, 107144. https://doi.org/10.1016/j.tws.2020.107144

Melnikova, R., Ehrmann, A., & Finsterbusch, K. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. IOP conference series: materials science and engineering, 2014, 62(1), 012018. https://doi.org/10.1088/1757-899X/62/1/012018

Miłek, M. Metrologia elektryczna wielkości nieelektrycznych. Uniwersytet Zielonogórski, Zielona Góra, Poland, 2006

Nowak, A., Baier, A., Kołodziej, A., & Żur, P. (2021, October). Race car mirror cover production focused on reducing air drag. IOP Conference Series: Materials Science and Engineering, 2021, 1182(1), 012055. https://doi.org/10.1088/1757-899X/1182/1/012055

Podroužek, J., Marcon, M., Ninčević, K., & Wan-Wendner, R. Bio-inspired 3D infill patterns for additive manufacturing and structural applications. Materials, 2019, 12(3), 499. https://doi.org/10.3390/ma12030499

Popescu, D., Zapciu, A., Amza, C., Baciu, F., & Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 2018, 69, 157-166. https://doi.org/10.3390/ma12030499

Sajadi, S. M., Owuor, P. S., Schara, S., Woellner, C. F., Rodrigues, V., Vajtai, R., ... & Ajayan, P. M. Multiscale geometric design principles applied to 3D printed schwarzites. Advanced Materials, 2018, 30(1), 1704820. https://doi.org/10.1002/adma.201704820

Saufi, S. A. S. A., Zuhri, M. Y. M., Dezaki, M. L., Sapuan, S. M., Ilyas, R. A., As’ arry, A., ... & Bodaghi, M. Compression Behaviour of Bio-Inspired Honeycomb Reinforced Starfish Shape Structures Using 3D Printing Technology. Polymers, 2021, 13(24), 4388. https://doi.org/10.3390/polym13244388

Schmitt, M., Mehta, R. M., & Kim, I. Y. Additive manufacturing infill optimization for automotive 3D-printed ABS components. Rapid Prototyping Journal, 2019. https://doi.org/10.1108/RPJ-01-2019-0007

Sebaey, T. A., & Mahdi, E. Crushing behavior of a unit cell of CFRP lattice core for sandwich structures’ application. Thin-Walled Structures, 2017, 116, 91-95. https://doi.org/10.1016/j.tws.2017.03.016

Solomon, I. J., Sevvel, P., & Gunasekaran, J. A review on the various processing parameters in FDM. Materials Today: Proceedings, 2021, 37, 509-514. https://doi.org/10.1016/j.matpr.2020.05.484

Tao, Y., Li, P., Zhang, H., Shi, S. Q., Zhang, J., & Yin, Q. Compression and flexural properties of rigid polyurethane foam composites reinforced with 3D-printed polylactic acid lattice structures. Composite Structures, 2022, 279, 114866. https://doi.org/10.1016/j.compstruct.2021.114866

Tian, X., Liu, T., Yang, C., Wang, Q., & Li, D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Composites Part A: Applied Science and Manufacturing, 2016, 88, 198-205. https://doi.org/10.1016/j.compositesa.2016.05.032

Vedrtnam, A. Novel method for improving fatigue behavior of carbon fiber reinforced epoxy composite. Composites Part B: Engineering, 2019, 157, 305-321. https://doi.org/10.1016/j.compositesb.2018.08.062

Zhang, G., Ma, L., Wang, B., & Wu, L. Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores. Composites Part B: Engineering, 2012, 43(2), 471-476. https://doi.org/10.1016/j.compositesb.2011.11.017

Zhang, J., & Yanagimoto, J. Design of bendable sandwich sheets with 3D printed CFRP cores via multi-stage topology optimization. Composite Structures, 2022, 287, 115372. https://doi.org/10.1016/j.compstruct.2022.115372

Żur, A., Żur, P., Michalski, P., & Baier, A. Preliminary Study on Mechanical Aspects of 3D-Printed PLA-TPU Composites. Materials, 2022, 15(7), 2364. https://doi.org/10.3390/ma15072364

Żur, P., Kołodziej, A., & Baier, A. Finite elements analysis of PLA 3D-printed elements and shape optimization. European Journal of Engineering Science and Technology, 2019, 2(1), 59-64. https://doi.org/10.33422/EJEST.2019.01.51

Żur, P., Kołodziej, A., Nowak, A., & Baier, A. Manufacturing A Personalised Composite Material Driver’s Seat. International Journal of Modern Manufacturing Technologies, 2021, 13(3), 191-196. https://doi.org/10.54684/ijmmt.2021.13.3.191

http://www.grm-systems.cz/pl/epoxy [Accessed 7.09.2022]

https://www.easycomposites.eu/milled-carbon-fibre-powder [Accessed 7.09.2022]

Downloads

Published

2024-06-20

How to Cite

Paweł Żur, Alicja Żur, Piotr Michalski, & Andrzej Baier. (2024). STRAIN GAUGE TESTING OF 3D-PRINTED CFRP SANDWICH STRUCTURE: Received: 02nd August 2023 Revised: 18th July 2023, 22nd December 2023, 29th December 2023, 16th January 2024, 29th January 2024 Accepted: 03rd August 2023. MATTER: International Journal of Science and Technology, 10, 48–74. https://doi.org/10.20319/mijst.2024.10.4874

Issue

Section

Articles