Received: 21st July 2023; Revised: 20th October 2023, 03rd November 2023; Accepted: 06th November 2023


  • Hakan Çiftçi Mining Engineering, Afyon Kocatepe University, Afyonkarahisar, Türkiye



Lizardite, Serpentine, Grinding, Mechanical Activation, Stirred Media Mill


Mechanical activation of Ca/Mg silicates by grinding is a pre-treatment of some mineral carbonization processes. In this study, the mechanical activation of lizardite ore from a chromite beneficiation plant waste by grinding in a stirred media mill was studied. For grinding studies, grinding times of 10-20-30 min and stirring speeds of 600-800-1000-1200 rpm were the parameters investigated, while the ball charge rate was 60% and the ore charge rate was kept constant at 40%. This way, the effects of grinding time and stirring speed on particle size distribution and energy consumption were investigated. At the end of the grinding studies, the stirring speed was determined as 1200 rpm, and the grinding time was 10 min for the finer particle size distribution (d10: 2,7 µm, d50: 13,6 µm, d90: 57.6 µm) with less energy consumption (130.4 kWh/ton). FT-IR analyses proved that the samples were dehydroxylated by the milling process. As a result, according to the analysis performed after grinding, it can be said that the finer product obtained can be used in mineral carbonation processes.


Alex, T. C., Kumar, R., Roy, S. K., & Mehrotra, S. P. (2016). Mechanical activation of Al-oxyhydroxide minerals–a review. Mineral Processing and Extractive Metallurgy Review, 37(1), 1-26.

Altun, O., Benzer, H., & Enderle, U. (2013). Effects of operating parameters on the efficiency of dry stirred milling. Minerals Engineering, 43, 58-66.

Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy, 208, 1389-1419.

Azdarpour, A., Asadullah, M., Mohammadian, E., Hamidi, H., Junin, R., & Karaei, M. A. (2015). A review on carbon dioxide mineral carbonation through pH-swing process. Chemical Engineering Journal, 279, 615-630.

Çiftçi, H., Arslan, B., Bilen, A., Arsoy, Z., & Ersoy, B. (2021). Optimization of leaching conditions for extraction of magnesium from a chromite beneficiation plant tailing predominantly containing lizardite. Bulletin of the Mineral Research and Exploration, 164, 251-259.

Çiftçi, H., & Özçatal, M. (2021). Dry Grinding of Bentonite by Stirred Media Mill. Journal of Characterization, (1), 62-69.

Çiftçi, H., Ersoy, B., & Evcin, A. (2020). Purification of Turkish bentonites and investigation of the contact angle, surface free energy and zeta potential profiles of organo-bentonites as a function of CTAB concentration. Clays and Clay Minerals, 68, 250-261.

Dlugogorski, B. Z., & Balucan, R. D. (2014). Dehydroxylation of serpentine minerals: Implications for mineral carbonation. Renewable and Sustainable Energy Reviews, 31, 353-367.

Eswaraiah, C., Venkat, N., Mishra, B. K., & Holmes, R. (2015). A comparative study on a vertical stirred mill agitator design for fine grinding. Separation Science and Technology, 50(17), 2639-2648.

Goff, F., Guthrie, G., Lipin, B., Fite, M., Chipera, S., Counce, D., ... & Ziock, H. (2000). Evaluation of ultramafic deposits in the Eastern United States and Puerto Rico as sources of magnesium for carbon dioxide sequestration (No. LA-13694-MS). Los Alamos National Lab.(LANL), Los Alamos, NM (United States).

Hacıfazlıoğlu, H., & Korkmaz, A. V. (2020). Performance comparison of stirred media mill and ball (BOND) mill in bauxite grinding. Particulate Science and Technology, 38(4), 404-408.

Hasan, M., Palaniandy, S., Hilden, M., & Powell, M. (2017). Calculating breakage parameters of a batch vertical stirred mill. Minerals Engineering, 111, 229-237.

Haug, T. A., Kleiv, R. A., & Munz, I. A. (2010). Investigating dissolution of mechanically activated olivine for carbonation purposes. Applied Geochemistry, 25(10), 1547-1563.

Li, J., & Hitch, M. (2018). Mechanical activation of magnesium silicates for mineral carbonation, a review. Minerals Engineering, 128, 69-83.

Nelson, M. G. (2004). Carbon dioxide sequestration by mechanochemical carbonation of mineral silicates. Report No. DE-FG26-99NT41547. University of Utah. Salt Lake City, Utah.

Santosh, T., Soni, R. K., Eswaraiah, C., Rao, D. S., & Venugopal, R. (2020). Optimization of stirred mill parameters for fine grinding of PGE bearing chromite ore. Particulate Science and Technology, 39(6), 663-675.

Toraman, O. Y., & Katırcıoglu, D. (2011). A study on the effect of process parameters in stirred ball mill. Advanced Powder Technology, 22(1), 26-30.

Toraman, O. Y. (2013). Dry fine grinding of calcite powder by stirred mill. Particulate Science and Technology, 31(3), 205-209.




How to Cite

Çiftçi, H. (2023). MECHANICAL ACTIVATION OF LIZARDITE BY DRY GRINDING FOR ENHANCED MINERAL CARBONATION: Received: 21st July 2023; Revised: 20th October 2023, 03rd November 2023; Accepted: 06th November 2023. MATTER: International Journal of Science and Technology, 9(2), 17–28.