EXPLORING INNOVATIVE SCALE-UP SOLUTIONS FOR LIGHT INTEGRATION IN TEXTILES USING ELECTROLUMINESCENT FIBERS

Received: 15th January 2022; Revised: 10th March 2022, 16th March 2022; Accepted: 22nd April 2022

Authors

  • Nabiha Ben Sedrine Castros S. A., Rua da Igreja Velha, São Félix da Marinha, Portugal
  • Amanda Melo CeNTI - Centre for Nanotechnology and Smart Materials, R. Fernando Mesquita, Vila Nova de Famalicão, Portugal
  • Albertino Goth CeNTI - Centre for Nanotechnology and Smart Materials, R. Fernando Mesquita, Vila Nova de Famalicão, Portugal
  • Nelson Duraes CeNTI - Centre for Nanotechnology and Smart Materials, R. Fernando Mesquita, Vila Nova de Famalicão, Portugal
  • Ricardo Silva CeNTI - Centre for Nanotechnology and Smart Materials, R. Fernando Mesquita, Vila Nova de Famalicão, Portugal
  • Pedro Silva Castros S. A., Rua da Igreja Velha, São Félix da Marinha, Portugal
  • Paulo Mendes Castros S. A., Rua da Igreja Velha, São Félix da Marinha, Portugal

DOI:

https://doi.org/10.20319/mijst.2022.81.89101

Keywords:

Light integration, Electroluminescent fibres, Textiles, Dip-coating

Abstract

In this work, we present our results on one-dimensional (1-D) light-emitting devices and their textile integration. Indeed, light integration in textiles is very challenging and thanks to their unique 1-D configuration for possible miniaturization in the lateral direction, light-emitting fibres are promising since they present higher flexibility and adaptability than planar devices and can be easily integrated into textile processes. Therefore, this work is dedicated to studying and optimising these structures to achieve flexibility, stability, suitability for large-scale production and their integration into textiles. 1-D light-emitting devices consisting of electroluminescent (EL) fibres with different structures will be studied. Although the dip-coating method presents several challenges, it turns out that this method is the most promising for the scalability of the process.

References

Ben Sedrine N., Melo A., Goth A., Duraes N., Silva R., Silva P., Mendes P., Exploring innovative solutions for light integration in textiles (Dec. 2021), Oral Technical Presentation at ICSTR Lisbon – International Conference on Science & Technology Research, https://www.youtube.com/watch?v=o-LRKBPKrxA

Brochier Technologies, http://www.brochiertechnologies.com/en/technology/#en

Lanz T., Sandström A., Tang S., Chabrecek P., Sonderegger U., Edman L., A (2016), light–emission textile device: conformal spray-sintering of a woven fabric electrode, Flexible Printed Electron. 1, 025004, https://doi.org/10.1088/2058-8585/1/2/025004

Lipomi D. J., Lee J. A., Vosgueritchian M., Tee B. C. K., Bolander J. A., Bao Z. (2012), Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates, Chemistry of Materials 24.2, pp. 373–382. issn: 08974756. https://doi.org/10.1021/cm203216m

Mordon S., Thécua E., Ziane L., Lecomte F., Deleporte P., Baert G., Vignion A.-S. -Dewalle (2020), Light emitting fabrics for photodynamic therapy: Technology, experimental and clinical applications, Translational Biophotonics;2:e202000005 https://doi.org/10.1002/tbio.202000005

Oguz Y., Cochrane C., Koncar V., Mordonac S. R. (2016), Doehlert experimental design applied to the optimization of light-emitting textile structures, Optical Fiber Technology, 30, 38-47, https://doi.org/10.1016/j.yofte.2016.01.012

Schlingman K., Chen Y., Carmichael R. S., Carmichael T. B. (2021), 25 Years of Light-Emitting Electrochemical Cells: A Flexible and Stretchable Perspective, Adv. Mater. 33, 2006863, https://doi.org/10.1002/adma.202006863

Wang Y., Zhu C., Pfattner R., Yan H., Jin L., Chen S., Molina-Lopez F., Lissel F., Liu J., Rabiah N. I., Chen Z., Chung J. W., Linder C., Toney M. F., Murmann B., Bao Z. (2017), A highly stretchable, transparent, and conductive polymer, Science Advances 3.3, pp. 1–11. issn: 23752548. https://doi.org/10.1126/sciadv.1602076

Yang Z., Wang W., Pan J., Ye C. (2020), Alternating Current Electroluminescent Devices with Inorganic Phosphors for Deformable Displays, Cell Reports Physical Science 1, 100213, https://doi.org/10.1016/j.xcrp.2020.100213 and references therein.

Zhang Z., Cui L., Shi X., Tian X., Wang D., Gu C., Chen E., Cheng X., Xu Y., Hu Y., Zhang J., Zhou L., Fong H. H., Ma P., Jiang G., Sun X., Zhang B., Peng H. (2018), Textile Display for Electronic and Brain-Interfaced Communications, Adv. Mater., 30, 1800323, https://doi.org/10.1002/adma.201800323

Zhang Z., Guo K., Li Y., Li X., Guan G., Li H., Luo Y., Zhao F., Zhang Q., Wei B., Pei Q., Peng H. (2015), A colour-tunable, wearable fibre-shaped polymer light-emitting electrochemical cell, Nat. Photonics 9, 233, https://doi.org/10.1038/nphoton.2015.37

Downloads

Published

2022-05-12

How to Cite

Ben Sedrine, N., Melo, A., Goth, A., Duraes, N., Silva, R., Silva, P., & Mendes, P. (2022). EXPLORING INNOVATIVE SCALE-UP SOLUTIONS FOR LIGHT INTEGRATION IN TEXTILES USING ELECTROLUMINESCENT FIBERS: Received: 15th January 2022; Revised: 10th March 2022, 16th March 2022; Accepted: 22nd April 2022. MATTER: International Journal of Science and Technology, 8(1), 89–101. https://doi.org/10.20319/mijst.2022.81.89101