INFLUENCE OF CHEMICAL SURFACE MODIFICATION ON MICRO-WEAR CHARACTERISTICS OF SUGARCANE NANOCELLULOSE EPOXY NANOCOMPOSITES
DOI:
https://doi.org/10.20319/mijst.2019.43.157178Keywords:
Coefficient of Friction, Epoxy Resin, Nanocellulose, Response Surface Methodology, Salt Solution Treatment, WearAbstract
The waste sugarcane bagasse is the primary agricultural biomass of sugarcane industry and its main constituents is cellulose. These waste sugarcane bagasse can also be applied as reinforcement material in polymer matrix composites. In this present work, the nanocellulose fibers extracted from sugarcane bagasse using salt solution and alkaline treatment process. Sugarcane nanocellulose fiber reinforced epoxy nanocomposites were manufactured by wet layup method. This investigation has been conducted to exhibit the utilization of plant cellulose fiber as the potential reinforcement of synthetic fibers in tribo-composites. The dry sliding wear experiments designed and carried out as per central composite design to determine influence of 3 variable factors such as sliding velocity, sliding distance and load on the wear characteristics of epoxy nanocomposites. From ANOVA (Analysis of variance), it is observed that all three independent parameters plays an important role in the wear characteristics of epoxy nanocomposites, as proven from scanning electron microscope. Simultaneously minimize these tribological characteristics, desirable values of the parameters were depicted to be 5.94 m/s, 5 km and 5 N for sliding velocity, distance and load respectively. From normal probability curves, it is signified that there is a good agreement within the RSM models and experimental results.
References
Abraham E., Elbi P., Deepa B., Jyotish kumar P., Pothen L., Narine S., & Thomas S. (2012). X-ray diffraction and biodegradation analysis of green composites of natural rubber/ nanocellulose. Polymer Degradation and Stability, 97, 2378-2387. https://doi.org/10.1016/j.polymdegradstab.2012.07.028
Alamri H., & Low I. M. (2012). Microstructural, mechanical and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites. Polymer Composites, 33(4), 589-600. https://doi.org/10.1002/pc.22163
Babee M., Jonoobi M., Hamzeh Y., & Ashori A. (2015). Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydrate Polymers, 132, 1-8. https://doi.org/10.1016/j.carbpol.2015.06.043
Barari B., Omrani E., Moghadam A. D., Menezes P. L., Pillai K. M., Rohatgi P. K. (2016). Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the green composite. Carbohydrate Polymers, 147, 282-293. https://doi.org/10.1016/j.carbpol.2016.03.097
Bledzki A. K., Mamun A. A., Bonnia N. N., & Ahmad S. (2012). Basic properties of grain by products and their variability in polypropylene composites. Industrial Crops and Products, 37, 427-434. https://doi.org/10.1016/j.indcrop.2011.05.010
Chand N., & Dwivedi U. (2007). High stress abrasive wear study on bamboo. Journal of Materials Processing Technology, 183(2), 155-159. https://doi.org/10.1016/j.jmatprotec.2006.09.036
Chin C., & Yousif B. (2009). Potential of kenaf fibers as reinforcement for tribological applications. Wear, 267(9), 1550-1557. https://doi.org/10.1016/j.wear.2009.06.002
Feng Y. H., Li Y. J., Xu B. P., Zhang D. W., Qu J. P., & He H. Z. (2013). Effect of fiber morphology on rheological properties of plant fiber reinforced poly(butylenes succinate) composites. Composites Part B: Engineering, 44, 193-199. https://doi.org/10.1016/j.compositesb.2012.05.051
Feng Y. H., Zhang D. W., Qu J. P., He H. Z., & Xu B. P. (2011). Rheological properties of sisal fiber/ poly(butylene succinate) composites. Polymer Testing, 30(1), 124-130. https://doi.org/10.1016/j.polymertesting.2010.11.004
Gabr M. H., Phong N. T., Okubo K., Uzawa K., Kimpara I., & Fujii T. (2014). Thermal and mechanical properties of electrospun nanocellulose reinforced epoxy nanocomposites. Polymer Testing, 37, 51-58. https://doi.org/10.1016/j.polymertesting.2014.04.010
Gandini A., & Lacerda T. M. (2015). From monomers to polymers from renewable resources: recent advances. Progress in Polymer Science, 48, 1-39. https://doi.org/10.1016/j.progpolymsci.2014.11.002
Ghasemi F. A., Ghasemi I., Menbari S., Ayaz M., & Ashori A. (2016). Optimization of mechanical properties of polypropylene/ talc/ graphene composites using response surface methodology. Polymer Testing, 53, 283-292. https://doi.org/10.1016/j.polymertesting.2016.06.012
Gilfillan W. N., Nguyen D. M. T., Sopade P. A., & Doherty W. O. S. (2012). Preparation and characterization of composites from starch and sugarcane fiber. Industrial Crops and Products, 40, 45-54. https://doi.org/10.1016/j.indcrop.2012.02.036
Islam M. A., & Saadi M. A. S. R. (2018). Production and characterization of green polymer composite with natural fillers. Matter: International Journal of Science and Technology, 4(2), 137-148. https://doi.org/10.20319/mijst.2018.42.137148
Jawaid M., Alothman O. Y., Saba N., Tahir P. M., & Khalil H. (2015). Effects of fibers treatment on dynamic mechanical and thermal properties of epoxy hybrid composites. Polymer Composites, 36, 1669-1674. https://doi.org/10.1002/pc.23077
Leyland A., & Matthews A. (2000). On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behavior. Wear, 246(1), 1-11. https://doi.org/10.1016/S0043-1648(00)00488-9
Li W., Wu Q., Zhao X., Huang Z., Cao J., Li J., & Liu S. (2014). Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydrate Polymers, 113, 403-410. https://doi.org/10.1016/j.carbpol.2014.07.031
Li Y. D., Zeng J. B., Li W. D., Yang K. K., Wang X. L., & Wang Y. Z. (2009). Rheology, crystallization, and biodegradability of blends based on soy protein and chemically modified poly (butylene succinate). Industrial Engineering and Chemistry Research, 48, 4817-4825. https://doi.org/10.1021/ie801718f
Liu Y., Xie J., Wu N., Wang L., Ma Y., & Tong J. (2019). Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribological International, 131, 398-405. https://doi.org/10.1016/j.triboint.2018.11.004
Nahas M. N. (2018). The fracture behavior of random fiber-reinforced composite specimens. Matter: International Journal of Science and Technology, 4(2), 63-73. https://dx.doi.org/10.20319/mijst.2018.42.6373
Nirmal U., Hashim J. & Low K. (2012). Adhesive wear and frictional performance of bamboo fibers reinforced epoxy composite. Tribology International, 47, 122-133. https://doi.org/10.1016/j.triboint.2011.10.012
Pandey A., Soccol C. R., Nigam P., & Soccol V. T. (2000). Biotechnological potential of agro-industrial residues L: sugarcane bagasse. Bioresource Technology, 74(1), 69-80. https://doi.org/10.1016/S0960-8524(99)00142-X https://doi.org/10.1016/S0960-8524(99)00143-1
Pillai K. V., & Renneckar S. (2016). Dynamic mechanical analysis of layer-by-layer cellulose nanocomposites. Industrial Crops and Products, 93, 267-275. https://doi.org/10.1016/j.indcrop.2016.02.037
Saba N., Jawaid M., Alothman O.Y., Paridah M., & Hassan A. (2015). Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 0731684415618459.
Saba N., Safwan A., Sanyang M. I., Mohammad F., Pervaiz M., Jawaid M., Alothman O. Y., & Sain M. (2017). Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. International Journal of Biological Macromolecules, 102, 822-828. https://doi.org/10.1016/j.ijbiomac.2017.04.074
Saba N., Tahir P. M., Abdan K., & Ibrahim N. A. (2016) Fabrication of epoxy nanocomposites from oil palm nano filler: mechanical and morphological properties. Bioresources, 11, 7721-7736. https://doi.org/10.15376/biores.11.3.7721-7736
Satyanarayana K. G., Arizaga G. G. C., & Wypych F. (2009). Biodegradable composites based on lignocellulosic fibers: an overview. Progress in Polymer Science, 34, 982-1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002
Shalwan A., & Yousif B. F. (2014). Investigation on interfacial adhesion of date palm/ epoxy using fragmentation technique. Materials and Design, 53, 928-937. https://doi.org/10.1016/j.matdes.2013.07.083
Su S. K., & Wu C. S. (2011). Polyester biocomposites from recycled natural fibers: characterization and biodegradability. Journal of Applied Polymer Science, 119, 1211-1219. https://doi.org/10.1002/app.32808
Sun J. X., Sun X. F., Zhao H., & Sun R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2), 331-339. https://doi.org/10.1016/j.polymdegradstab.2004.02.008
Sun Y., & Cheng J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
Valasek P., D’ Amato R., Muller M., & Ruggiero A. (2018). Mechanical properties and abrasive wear of white/ brown coir epoxy composites. Composites Part B: Engineering, 146, 88-97. https://doi.org/10.1016/j.compositesb.2018.04.003
Yousif B, & El-Tayeb N. (2008). Adhesive wear performance of T-OPRP and UT-OPRP composites. Tribology Letters, 32(3), 199-208. https://doi.org/10.1007/s11249-008-9381-7
Yousif B., Lau S. T., & McWilliam S. (2010). Polyester composite based on betelnut fiber for tribological applications. Tribological International, 43(1), 503-511. https://doi.org/10.1016/j.triboint.2009.08.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.