DESIGN OF MOBILE AND FUNCTIONAL PHOTOBIOREACTOR

Authors

  • Önder UYSAL Faculty of Agriculture, Süleyman Demirel University, Isparta, Turkey
  • Kamil EKINCI Faculty of Agriculture, Süleyman Demirel University, Isparta, Turkey

DOI:

https://doi.org/10.20319/mijst.2019.43.150156

Keywords:

Photobioreactor, Tubular, Microalgae, Mobile, Functional

Abstract

Recently, microalgae are used in sectors such as agriculture, food, cosmetics, animal feed, energy. Raceways are used for the most common open systems for high density cultivation when tubular photobioreactors are used for closed systems. In two decades, there have been significant developments in different photobioreactor designs for commercial scale production of alternative species in the production of commercial microalgae. There is no risk of contamination as a result of controlled cultivation in tubular photobioreactors. This allows intensive and pure cultivation.In this study, 75 x 69 mm acrylic pipes were used for the tubular photobioreactor. Each flow path is set to 2 m. By using a 40 liter closed-loop unit while the total volume of acrylic pipes is 60 liters, total volume is designed as 100 lt. In this photobioreactor designed and prototyped, suitable conditions were established for the cultivation of different microalgae strains. The tubular photobioreactor is made mobile and functional. In this photobioreactor, pH, optical density, biomass values are controlled.As a result, a mobile and functional photobioreactor has been designed to enable the cultivation of different microalgae strains for different sectors for microalgae growing. This photobioreactor is suitable for continuous, semi-continuous and continuous production.

References

Bosma R., Vree J.H.de, Slegers P.M., Janssen M., Wijffels R.H. & Barbosa M.J. (2014, October). Design and construction of the microalgal pilot facility AlgaePARC. Algal Research Volume 6, Part B, Pages 160-169.

Camacho Rubio, F., Acie ́n Ferna ́ndez, F.G., Sa ́nchez Pe ́rez, J.A., Garc ́ıa Camacho, F. & Molina Grima, E., (1999). Pre- diction of dissolved oxygen and carbon dioxide concen- tration profiles in tubular photobioreactors for microalgal culture. Biotechnol. Bioeng. 62, 71–86.

Chisti, Y., (1989). Airlift Bioreactors. Elsevier, London.

Chisti, Y., (1999). Shear sensitivity. In: Flickinger, M.C., Drew, S.W. (Eds.), Encyclopedia of Bioprocess Technol- ogy: Fermentation, Biocatalysis and Bioseparation, vol. 5. Wiley, New York, pp. 2379–2406.

Chisti Y. (2007) Biodiesel from microalgae. Biotechnol Adv. 25:294–306.

Draaisma R. B., Wijffels R. H ., Slegers PM(Ellen), Brentner L.B., Roy A. & Barbosa M.J., (2013, April). Food commodities from microalgae. Current Opinion in Biotechnology Volume 24, Issue 2, Pages 169-177.

Fasaei F., Bitter J.H., Slegers P.M. & van Boxtel A.J.B. (2018, April). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research. Volume 31, Pages 347-362.

García-Carvalho, A.P., Meireles, L.A. & Malcata, F.X., (2006). Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog. 22, 1490–1506. http://dx.doi.org/10.1021/bp060065r.

Janssen, M., Tramper, J., Mur, L.R. & Wijffels, R.H., (2003). Enclosed outdoor photo- bioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol. Bioeng. 81, 193–210. http://dx.doi.org/10.1002/bit.10468.

Molina Grima, E., (1999). Microalgae, mass culture methods. In: Flickinger, M.C., Drew, S.W. (Eds.), Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, vol. 3. Wiley, New York, pp. 1753–1769.

Molina E., Fernández J., Acién F.G. & Chisti Y. (2001). Tubular photobioreactor design for algal cultures, Journal of Biotechnology, 92, 113–131.

Norsker N.H., Barbosa M. J. , Vermuë M.H. & Wijffels R. H. (2011). Microalgal production—a close look at the economics. Biotechnol Adv. 2011;29:24–7.

Pirt, S.J., Yuan, K.L., Walach, M.R., Pirt M.W., Balyuzi, H.H.M. & Bazin M.J., (1983). A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance, Journal Chem. Tech. Biotechnology, 33, 33-58.

Tredici, M.R., (1999). Bioreactors, photo. In: Flickinger, M.C., Drew, S.W. (Eds.), Encyclopedia of Bioprocess Technol- ogy: Fermentation, Biocatalysis and Bioseparation, vol. 1. Wiley, New York, pp. 395–419.

Uysal, O., Uysal, F. O., & Ekinci, K. (2015). Evaluation of microalgae as microbial fertilizer. European Journal of Sustainable Development, 4(2), 77-82.

Uysal, O., Uysal, F. O., & Ekinci, K. 2016. Determinationo Fertilizing Characteristics of Three Different Microalgae Cultivated in Raceways In Greenhouse Conditions. Agronomy Series of Scientific Research/Lucrari Stiintifice Seria Agronomie, 59(1).

Wang C. & Lan C. Q., (2018 July-August). Effects of shear stress on microalgae – A review. Biotechnology Advances. Volume 36, Issue 4, Pages 986-1002.

Vandanjon, L., Rossignol, N., Jaouen, P., Roberts, J.M. & Que ́me ́neur, F., (1999). Effects of shear on two microalgae species. Contribution of pumps and valves in tangential flow filtration systems. Biotechnol. Bioeng. 63, 1–9.

Downloads

Published

2019-01-30

How to Cite

Uysal, Ö, & Ekinci, K. (2019). DESIGN OF MOBILE AND FUNCTIONAL PHOTOBIOREACTOR. MATTER: International Journal of Science and Technology, 4(3), 150–156. https://doi.org/10.20319/mijst.2019.43.150156