QUANTUM ALGORITHMS WITH CONTROLLED HODGKIN-HUXLEY NEURONS
Received: 18th June 2021; Revised: 10th August 2021, 23rd September 2021; Accepted: 13th November 2021
DOI:
https://doi.org/10.20319/mijst.2021.73.0115Keywords:
Hodgkin-Huxley Neuron, Quantum Computation, Deutsch – Jozsa Algorithm, Target Attractor Feedback, Speed Gradient FeedbackAbstract
The dynamical system corresponding to the Hodgkin-Huxley (HH) neuron contains the control parameter, for instance, the electrical current or another external signal, stimulating the action potential (outcome) in the axon. Choosing the appropriate shape of the control via speed gradient or alternative algorithms one can keep the system imitating a quantum behaviour. The controlled four-dimensional HH system, in this case, involves effects similar to the quantum phase contributions to the computational process. We provide a simple example of the HH-based computational algorithm following the quantum paradigm. The linear chain of two HH neurons emulates the results of the Deutsch – Jozsa algorithm for the searching problem. To reproduce the output effect similar to the contribution of quantum phases the neurons are controlled by one of two alternative feedback versions: target attractor or speed gradient. We invent the successful classical emulation of the Deutch-type quantum algorithm and discuss the pros and cons of both alternative feedback methods. Our approach can open a novel method for the practical realization of quantum algorithms and develop new perspectives for the computational properties of artificial neural networks (ANNs). The possible applications of the proposed algorithms are the modelling of epilepsy in the ANNs and the big data analysis.
References
Aradyamath, P., Naghabhushana, N. M., Ujjinimatad, R. (2019). Quantum computing concepts with Deutsch-Jozsa algorithm. International Journal of Informatics Visualization, 3(1), 59-68. https://dx.doi.org/10.30630/joiv.3.1.218
Aspuru-Guzik, A., Walther, P. (2012). Photonic quantum simulators. Nature Physics, 8, 285-291. https://doi.org/10.1038/nphys2253
Batty, M., Casaccino, A., Duncan, A. J., Rees, S., Severini, S. (2008). An Application of the Deutsch-Jozsa Algorithm to Formal Languages and the Word Problem, in Groups, in “Theory of Quantum Computation, Communication, and Cryptography”, Springer, 57-69. https://dx.doi.org/10.1007/978-3-540-89304-2_6
Biamonte, J., Faccin, M., De Domenico, M. (2019). Complex networks from classical to quantum. Communications Physics, 2, 53. https://doi.org/10.1038/s42005-019-0152-6
Borisenok, S. (2020). Can controlled Hodgkin − Huxley neuron model quantum computations? Proc. of 6th International Conference on Engineering and Natural Sciences (ICENS 2020), 9-14. https://www.icens.eu/sites/default/files/2020_icens_proceedings_v1.pdf
Borisenok, S. (2020). Controlled Hodgkin – Huxley neuron vs-controlled qubit: pros and cons of their applications. Proc. of 4th International Conference on Mathematics “An Istanbul Meeting for World Mathematicians” ICOM 2020, 212-217.
http://raims.org/files/final_proceedings.pdf
Borisenok, S. (2020). Big Data analysis with controlled Hodgkin-Huxley neurons. Abstracts of International Conference on Cognitive Sciences INTERCOGNSCI-2020, poster talk 238. https://caics.ru/en_iacs
Borisenok, S. (2021). Deutsch – Jozsa algorithm with feedback-controlled FitzHugh – Nagumo neurons. Proc. of II. International Conference on Innovative Engineering Applications (CIEA’2021), 194-197.
http://iciea.alparslan.edu.tr/files/Full-text_proceeding_book_v1_4.pdf
Borisenok, S., Çatmabacak, Ö., Ünal, Z. (2018). Control of collective bursting in small Hodgkin-Huxley neuron clusters. Communications Faculty of Sciences University of Ankara Series A2-A3, 60(1), 21-30. https://dergipark.org.tr/en/pub/aupse/issue/36518/415714
Borisenok, S., Ünal, Z. (2017). Tracking of arbitrary regimes for spiking and bursting in the Hodgkin-Huxley neuron. MATTER: International Journal of Science and Technology, 3(2), 560-576. https://doi.org/10.20319/mijst.2017.32.560576
Borregaard, J., Sørensen, A. S., Lodahl, P. (2019). Quantum networks with deterministic spin-photon interfaces. Advanced Quantum Technologies, 2, 1800091.
https://doi.org/10.1002/qute.201800091
Deutsch, D., Jozsa, R. (1992). Rapid solutions of problems by quantum computation. Proceedings of the Royal Society of London A, 439(1907), 553-558.
https://doi.org/10.1098/rspa.1992.0167
Fradkov, A. L. (2007). Cybernetical Physics: From Control of Chaos to Quantum Control. Berlin, Heidelberg: Springer. https://www.springer.com/gp/book/9783540462750
Hodgkin, A. L., Huxley, A. F. (1952). Currents are carried by sodium and potassium ions through the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4),449-472.
https://doi.org/10.1113/jphysiol.1952.sp004717
Kolesnikov, A. (2013). Synergetic Control Methods of Complex Systems. Moscow: URSS Publ. https://library.bntu.by/sinergeticheskie-metody-upravleniya-slozhnymi-sistemami-energeticheskie-sistemy
La Cour, B. R., Lanham, S. A., Ostrove, C. I. (2018). Parallel quantum computing emulation. Proc. of 2018 IEEE International Conference on Rebooting Computing (ICRC), 1-9.
https://ieeexplore.ieee.org/document/8638597
La Cour, B. R., Ostrove, C. I., Ott, G. E., Starkey, M. J., Wilson, G. R. (2016). Classical emulation of a quantum computer. International Journal of Quantum Information, 14(4), 1640004. https://doi.org/10.1142/S0219749916400049
Li, Y, Lin, H. (2016). Quantum coherence and quantum phase transitions. Scientific Reports, 6, 26365. https://doi.org/10.1038/srep26365
Lodahl, P. (2017). Quantum-dot-based photonic quantum networks. Quantum Science and Technology, 3(1), 013001. https://doi.org/10.1088/2058-9565/AA91BB
Pechen, A. N., Borisenok, S. (2015). Energy transfer in two-level quantum systems via speed gradient-based algorithm. IFAC-Papers on Line, 48(11), 446-450.
https://doi.org/10.1016/j.ifacol.2015.09.226
Perseguers, S., Lewenstein, M., Acín, A., Cirac, J. (2010). Quantum random networks. Nature Physics, 6, 539-543. https://doi.org/10.1038/nphys1665
Pompili, M., Hermans, S. L. N., Baier, S., Beukers, H. K. C., Humphreys, P. C., Schouten, R. N., Vermeulen, R. F. L., Tiggelman, M. J., dos Santos Martins, L., Dirkse, B., Wehner, S., Hanson, R. (2021). Realization of a multi-node quantum network of remote solid-state qubits. Science, 372(6539), 259-264. https://doi.org/10.1126/science.abg1919
Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Massachusetts: Perseus Books.
https://www.amazon.com/Nonlinear-Dynamics-Chaos-Applications-Nonlinearity/dp/0738204536
Downloads
Published
How to Cite
Issue
Section
License
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.