STABILITY ENHANCEMENT OF NANO-NiO CATALYST WITH SiO2 SUPPORT TO GET IMPROVED HYDROGEN YIELD FROM METHANE DECOMPOSITION

Authors

  • U.P.M. Ashik Department of Chemical Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • W.M.A. Wan Daud Department of Chemical Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.20319/mijst.2016.21.4252

Keywords:

Nano-Catalysts, Modified Stöber Method, Thermo Catalytic Methane Decomposition, Hydrogen, Nano-Carbon, Bottom-Up Method

Abstract

The building of the nanoparticle from their precursors by the bottom-up method is a very fascinating practice in nanotechnology. Most promising two bottom-up methods are experimentally unveiled in this research contribution; i) controlled precipitation of Ni nanoparticles and their reinforcement with silicate by the modified Stöber method and ii) chemical vapor deposition of nano-carbon from methane over silicate supported nano-Ni catalyst. We found that the silicate addition results in the formation of single crystal NiO nanoparticles which exhibited catalytic activity-enhancing features, such as low particle size and high surface area and porosity. The single-point surface area was increased from 62.22 m2/g to 91.50 m2/g for n-Ni O nanoparticles, after silicate incorporation. Preliminary catalytic activity was also analyzed in a fixed-bed pilot plant. N-NiO/SiO2 nanoparticles generated 57.28% hydrogen at 730 °C. Isothermal methane decomposition was conducted at 625 °C to examine the stability of the catalyst.

References

Ashik, U. P. M., & Daud, W. M. A. W. (2015). Nano-nickel catalyst reinforced with silicate for methane decomposition to produce hydrogen and nanocarbon: synthesis by co-precipitation cum modified Stober method. RSC Advances, 5, 46735-46748. doi:10.1039/C5RA07098Hhttp://dx.doi.org/10.1039/C5RA07098H

Ashik, U. P. M., & Daud, W. M. A. W. (2015). Probing the differential methane decomposition behaviors of n-Ni/SiO2, n-Fe/SiO2 and n-Co/SiO2 catalysts prepared by co-precipitation cum modified Stober method. RSC Advances, 5(82), 67227-67241. doi:10.1 039/C5RA10997Chttp://dx.doi.org/10.1039/C5RA10997C

Ashik, U. P. M., Wan Daud, W. M. A., & Abbas, H. F. (2015). Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review. Renewable and Sustainable Energy Reviews, 44(0), 221-256. doi:http://dx.doi. org/10.1 016/j. rs er.2014.12.025http://dx.doi.org/10.1016/j.rser.2014.12.025

Ashok, J., Reddy, P. S., Raju, G., Subrahmanyam, M., & Venugopal, A. (2009). Catalytic Decomposition of Methane to Hydrogen and Carbon Nanofibers over Ni−Cu−SiO2 Catalysts. Energy & Fuels, 23(1), 5-13. doi:10.1021/ef8003976http: //dx.do i.org/10 .102 1/ef8003976

Castelino, K., Satyanarayana, S., & Sitti, M. (2005). Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly. Robotica, 23(04), 435-439. doi:doi:10.1017/S0263574704000864

Chan, H.-K., & Kwok, P. C. L. (2011). Production methods for nanodrug particles using the bottom-up approach. Advanced Drug Delivery Reviews, 63(6), 406-416. doi:htt p://d x.doi.org/10.1016/j.addr.2011.03.011http://dx.doi.org/10.1016/j.addr.2011.03.011

Figueiredo, J. L., Órfão, J. J. M., & Cunha, A. F. (2010). Hydrogen production via methane decomposition on Raney-type catalysts. International Journal of Hydrogen Energy,35(18), 9795-9800. doi:http://dx.doi.o rg/10.1016/j.ijh ydene.200 9.12.071 http://d x.doi .org/10.1016/j.ijhydene.2009.12.071

Kim, M. S., Rodriguez, N. M., & Baker, R. T. K. (1991). The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments. Journal of Catalysis, 131(1), 60-73. doi:http://dx.doi.org/10.1016/0021-9517(91)90323-Vhttp://dx.doi.o rg/10. 1 016/0021-9517(91)90323-V

Lee, K.-Y., Yeoh, W.-M., Chai, S.-P., Ichikawa, S., & Mohamed, A. R. (2012). Catalytic Decomposition of Methane to Carbon Nanotubes and Hydrogen: The Effect of Metal Loading on the Activity of CoO-MoO/Al2O3 Catalyst. Fullerenes, Nanotubes and Carbon Nanostructures, 21(2), 158-170. doi:10.1080/1536383X.2011 .597007htt p://dx. doi.org/10.1080/1536383X.2011.597007

Lu, W., & Lieber, C. M. (2007). Nanoelectronics from the bottom up. Nat Mater, 6(11), 841-850. Retrieved from http://dx.doi.org/1 0.1038/nm at2028htt p://dx. doi.org /10.103 8/ nmat2028

Nuernberg, G. D. B., Foletto, E. L., Campos, C. E. M., Fajardo, H. V., Carreño, N. L. V., & Probst, L. F. D. (2012). Direct decomposition of methane over Ni catalyst supported in magnesium aluminate. Journal of Power Sources, 208(0), 409-414. doi:h ttp://d x.doi.org/10.1016/j.jpowsour.2012.02.037http://dx.doi.org/10.1016/j.jpowsour.2012.02.037

Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. doi:ht tp://dx .doi.org/10.1016/0021-9797(68)90272-5http://dx.doi.org/10.1016/0021-9797(68)90272-5

Downloads

Published

2016-03-15

How to Cite

Ashik, U., & Daud, W. W. (2016). STABILITY ENHANCEMENT OF NANO-NiO CATALYST WITH SiO2 SUPPORT TO GET IMPROVED HYDROGEN YIELD FROM METHANE DECOMPOSITION . MATTER: International Journal of Science and Technology, 2(1), 42–52. https://doi.org/10.20319/mijst.2016.21.4252