PYROMETALLURGICAL METHOD FOR THE RECOVERY OF ALUMINUM FROM Fe2O3/α-Al2O3 CATALYST

Authors

  • Souad Djerad Laboratory of Environmental Engineering, Department of Chemical Engineering, University of Annaba, P.O. Box 12, 23000 Annaba, Algeria

DOI:

https://doi.org/10.20319/mijst.2017.s31.210223

Keywords:

Pyrometallurgy, Fusion, Alpha alumina, Recovery, Phase Transformation

Abstract

In this study we report an investigation on the recovery of iron and aluminum oxides by roasting Fe2O3/Al2O3 catalyst with KHSO4 under different operation conditions such as temperature, KHSO4/catalyst mass ratio (K/C) and reaction time. It was found that 79.67% of Al2O3 and 96.94% of Fe2O3 were dissolved after 7h at 600°C and K/C= 36. After the separation of Fe(III) and Al(III) in aqueous solution by a pH-controlled precipitation method, the resulting Al(OH)3 was dehydrated to γ-AlOOH (pseudo-boehmite) by heating at 105°C while γ- η and α-Al2O3+θ residues were obtained after calcination at 500-950 and 1200°C respectively.

References

Ahn, H.G. and Lee, D. J. (2002). Effect of ultra-fine gold particle addition to metal oxides in ethylene oxidation. Research on Chemical Intermediates 28, 451-459. Doi: https://doi.org/10.1163/156856702760346860

Boukerche, I., Habbache, N., Alane, N., Djerad, S., Tifouti, L. (2010). Dissolution of Cobalt from CoO/Al2O3 Catalyst with Mineral Acids. Ind. Eng. Chem. Res. 49, 6514-6520. Doi: https://doi.org/10.1021/ie901444y

Busnardo, R. G., Busnardo, N. G., Salvato, G. N., Afonso, J. C. (2007). Processing of spent NiMo and CoMo/Al2O3 catalysts via fusion with KHSO4. J. Hazard. Mater. 139, 391-398. Doi: https://doi.org/10.1016/j.jhazmat.2006.06.015

Chen, X., Chen, Y., Zhou, T., Liu, D. Hu, H., Fan, S. (2015). Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Management 38, 349-356. Doi: https://doi.org/10.1016/j.wasman.2014.12.023

Curkovic, L., Jelaca, M. F., Kurajica, S. (2008). Corrosion behavior of alumina ceramics in aqueous HCl and H2SO4 solutions. Corrosion Science 50, 872-878. Doi: https://doi.org/10.1016/j.corsci.2007.10.008

Ellmers, I., Pérez Vélez, R., Bentrup, U., Schwieger, W., Brückner, A., Grünert, W. (2015). SCR and NO oxidation over Fe-ZSM-5 – The influence of the Fe content. Catalysis Today 258, 337-346. https://doi.org/10.1016/j.cattod.2014.12.017

Genthe, W., Hausner, H. (1992). Influence of chemical composition on corrosion of alumina in acids and caustic solutions. J. Eur. Ceram. Soc. 9, 417-425. https://doi.org/10.1016/0955-2219(92)90102-J

Haneef, F., Akintug, B. (2016). Quantitative Assessment of Heavy Metals in Coal-Fired Power Plant’s Waste Water. Matter: International Journal of Science and Technology 2 (1) 135-149. https://doi.org/10.20319/Mijst.2016.s21.135149

Ingram-Jones, V. J., Slade, R. C. T., Davies, T. W., Southern, J. C., Salvador, S. (1996). Dehydroxylation sequences of gibbsite and boehmite: study of differences between soak and flash calcination and of particle-size effects. J. Mater. Chem. 6, 73-79. https://doi.org/10.1039/jm9960600073

Jang, S. W., Lee, H. Y., Lee, S. M., Lee, S. W., Shim, K. B. (2000). Mechanical activation effect on the transition of gibbsite to α-alumina. J. Mater. Sci. Letters 19, 507-510. . https://doi.org/10.1023/A:1006705820938

Kar, B. B., Murthy, B. V. R., Misra, V. N. (2005). Extraction of molybdenum from spent catalyst by salt-roasting. Int. J. Miner. Process. 76, 143-147. Doi: https://doi.org/10.1016/j.minpro.2004.08.017

Kim, E., Roosen, J., Horckmans, L., Spooren, J., Broos, K., Binnemans, K., Vrancken, K.C., Quaghebeur, M. (2017). Process development for hydrometallurgical recovery of valuable metals from sulfide-rich residue generated in a secondary lead smelter 169, 589-598. Doi: https://doi.org/10.1016/j.hydromet.2017.04.002

Larba, R., Boukerche, I., Alane, N., Habbache, N., Djerad, S., Tifouti, L. (2013). Citric acid as an alternative lixiviant for zinc oxide dissolution. Hydrometallurgy 134-135, 117-123. Doi: https://doi.org/10.1016/j.hydromet.2013.02.002

Matjie, R. H., Bunt, J. R., Van Heerden, J. H. P. (2005). Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal. Miner. Eng. 18, 299-310. Doi: https://doi.org/10.1016/j.mineng.2004.06.013

Ngo, T.H.A., Tran, D.T. (2017). Removal of heavy metal ions in water using modified polyamide thin film composite membranes. Matter: International Journal of Science and Technology 3, 91-103. Doi: https://doi.org/10.20319/Mijst.2017.31.91103

Nguefack, M., Popa, A. F., Rosignol, S., Kappenstein, C. (2003). Preparation of alumina through a sol–gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite. Phys. Chem. Chem. Phys. 5, 4279-4289. Doi: https://doi.org/10.1039/B306170A

Oda, K., Yoshio, T. (1997). Hydrothermal Corrosion of Alumina Ceramics. J. Am. Ceram. Soc. 80, 3233-3236. Doi: https://doi.org/10.1111/j.1151-2916.1997.tb03258.x

Tanong, K. Coudert, L., Mercier, G., Blais, J.F. (2016). Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. Journal of Environmental Management 181, 95-107. Doi: https://doi.org/10.1016/j.jenvman.2016.05.084

Trpčevská, J., Hoľková, B., Briančin, J., Korálová, K., Pirošková, J. (2015). The pyrometallurgical recovery of zinc from the coarse-grained fraction of zinc ash by centrifugal force. International Journal of Mineral processing 143, 25-33. Doi: https://doi.org/10.1016/j.minpro.2015.08.006

Tsuchida, T. (1994). ETA-DTA study of mechanically ground gibbsite. Thermochim. Acta 231, 337-339. Doi: https://doi.org/10.1016/0040-6031(94)80036-7

Tsuchida, T., Ichikawa, N. (1989). Mechanochemical phenomena of gibbsite, bayerite and boehmite by grinding. React. Solids 7, 207-217. Doi: https://doi.org/10.1016/0168-7336(89)80037-3

Tuncuk, A. and Akcil, A. (2016). Iron removal in production of purified quartz by hydrometallurgical process. International Journal of Mineral Processing 153, 44-50. Doi: https://doi.org/10.1016/j.minpro.2016.05.021

Wang, T., Qi, L., Lu, H., Ji, M. (2017). Flower-like Al2O3-supported iron oxides as an efficient catalyst for oxidative dehydrogenation of ethlybenzene with CO2. Journal of CO2 utilization 17, 162-169. Doi: https://doi.org/10.1016/j.jcou.2016.12.005

Downloads

Published

2017-05-17

How to Cite

Djerad, S. (2017). PYROMETALLURGICAL METHOD FOR THE RECOVERY OF ALUMINUM FROM Fe2O3/α-Al2O3 CATALYST . MATTER: International Journal of Science and Technology, 3(1), 210–223. https://doi.org/10.20319/mijst.2017.s31.210223