GREEN SYNTHESIS OF CU(OH)2 NANOMATERIALS USING NYMPHAEA RUBRA LEAVES EXTRACT AND THEIR ANTIBACTERIAL ACTIVITY

Authors

  • K. Madhusudhana Reddy Physical Chemistry Laboratory, Department of Chemistry, Sri Venkateswara University, Andhra Pradesh, India
  • Y.V. Rami Reddy Physical Chemistry Laboratory, Department of Chemistry, Sri Venkateswara University, Andhra Pradesh, India
  • Espenti Chandra Sekhar Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal, Andhra Pradesh, India
  • L. Kiran Babu Physical Chemistry Laboratory, Department of Chemistry, Sri Venkateswara University, Andhra Pradesh, India

DOI:

https://doi.org/10.20319/mijst.2017.32.478492

Keywords:

Green Synthesis, CuHNMs, Nymphaea Rubra Leaves Extract, Characterization and Anti-Bacterial Activity

Abstract

The present study gives the eco-friendly green synthesis for the preparation of copper hydroxide nanomaterials [CuHNMs] using Nymphaea Rubra leaves extract. Bio-molecules were responsible for the formation of CuHNMs and they found to play dual role of both reducing as well as capping agents. The synthesized CuHNMs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet-Visible spectrometer (UV-Vis), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Electron Diffraction Spectrum (EDS) and Dynamic Light Scattering (DLS).Characterization data reveals that the CuHNMs were crystalline in nature, orthorhombic in shape with an average size of 19.4 nm and Zeta Potential (Mean) was -10.0mV. The green synthesized CuHNMs were examined for its antibacterial activity and the results shows that these materials exhibit effective anti-bacterial activity against Bacillus subtilis when compared to Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli.

References

Alghuthaymi, M. A., Almoammar, H., Rai, M., Said-Galiev, E., & Abd-Elsalam, K. A. (2015). Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnology & Biotechnological Equipment, 29(2), 221-236. https://doi.org/10.1080/13102818.2015.1008194

Awwad, A. M., & Albiss, B. (2015). Biosynthesis of Colloidal Copper Hydroxide Nanowires Using Pistachio Leaf Extract. Advanced Materials Letters, 6(1), 51-54. https://doi.org/10.5185/amlett.2015.5630

Bang, J. H., & Suslick, K. S. (2010). Applications of Ultrasound to the Synthesis of Nanostructured Materials. Advanced Materials, 22(10), 1039-1059. https://doi.org/10.1002/adma.200904093

Bell, S. M., & Smith, D. D. (1975). The CDS Disc Method of Antibiotic Sensitivity Testing (Calibrated Dichotomous Sensitivity Test). Pathology, 7, 1-48. https://doi.org/10.3109/00313027509082602

Chakraborty, A., Majumdar, S., & Maiti, D. K. (2016). ChemInform Abstract: Selective Exploitation of Acetoacetate Carbonyl Groups Using Imidazolium Based Ionic Liquids: Synthesis of 3-Oxo-amides and Substituted Benzimidazoles. ChemInform, 47(46). https://doi.org/10.1002/chin.201646041

Chen, Y., Zhou, S., Li, L., & Zhu, J. (2017). Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today, 12, 98-115. https://doi.org/10.1016/j.nantod.2016.12.013

Das, J., & Velusamy, P. (2013). Antibacterial effects of biosynthesized silver nanoparticles using aqueous leaf extract of Rosmarinus officinalis L. Materials Research Bulletin, 48(11), 4531-4537. https://doi.org/10.1016/j.materresbull.2013.07.049

Ennis, E., & Handy, S. T. (2009). A Facile Route to C2-Substituted Imidazolium Ionic Liquids. Molecules, 14(6), 2235-2245. https://doi.org/10.3390/molecules14062235

Ennis, E., & Handy, S. T. (2009). A Facile Route to C2-Substituted Imidazolium Ionic Liquids. Molecules, 14(6), 2235-2245. https://doi.org/10.3390/molecules14062235

Espenti, C. S., Rao, K. K., & Rao, K. M. (2016). Bio-synthesis and characterization of silver nanoparticles using Terminalia chebula leaf extract and evaluation of its antimicrobial potential. Materials Letters, 174, 129-133. https://doi.org/10.1016/j.matlet.2016.03.106

Hossain, N., Mirghani, M. E., & Raus, R. B. (2015). Optimization of Moringa oleifera Leaf Extraction and Investigation of Anti Breast Cancer Activity with the Leaf Extract. Engineering International, 3(2), 97. https://doi.org/10.18034/ei.v3i2.775

Keat, C. L., Aziz, A., Eid, A. M., & Elmarzugi, N. A. (2015). Biosynthesis of nanoparticles and silver nanoparticles. Bioresources and Bioprocessing, 2(1). https://doi.org/10.1186/s40643-015-0076-2

Li, Z., Guan, R., Wang, L., & Liu, H. (2011). Antibacterial activity of Chinese herbs against pathogenic bacteria from eels in vitro. Journal Of Hunan Agricultural University, 37(3), 306-311. https://doi.org/10.3724/SP.J.1238.2011.00306

Liede, A., Fairchild, A., Friedman, S., Amelio, J., Hallett, D., Mansfield, C., & Metcalfe, K. (2016). Abstract P2-09-09: Risk-reducing surgery and cancer-related distress among femaleBRCA1andBRCA2mutation carriers:. Cancer Research, 76(4 Supplement). https://doi.org/10.1158/1538-7445.SABCS15-P2-09-09

Malik, P., Shankar, R., Malik, V., Sharma, N., & Mukherjee, T. K. (2014). Green Chemistry Based Benign Routes for Nanoparticle Synthesis. Journal of Nanoparticles, 2014, 1-14. https://doi.org/10.1155/2014/302429

Malik, P., Shankar, R., Malik, V., Sharma, N., & Mukherjee, T. K. (2014). Green Chemistry Based Benign Routes for Nanoparticle Synthesis. Journal of Nanoparticles, 2014, 1-14. https://doi.org/10.1155/2014/302429

Mehdizadeh, R., Hasanzadeh, M., Sanati, S., & Saghatforoush, L. A. (2012). Simple template-free solution route for the synthesis of Cu(OH)2and CuO nanostructures and application for electrochemical determination three ß-blockers. Journal of Experimental Nanoscience, 9(8), 763-775. https://doi.org/10.1080/17458080.2012.714479

Nadagouda, M. N., Hoag, G., Collins, J., & Varma, R. S. (2009). Green Synthesis of Au Nanostructures at Room Temperature Using Biodegradable Plant Surfactants. Crystal Growth & Design, 9(11), 4979-4983. https://doi.org/10.1021/cg9007685

Rajendran, S. P., & Sengodan, K. (2017). Synthesis and Characterization of Zinc Oxide and Iron Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract as Reducing Agent. Journal of Nanoscience, 2017, 1-7. https://doi.org/10.1155/2017/8348507

Ryan, C., & Menter, A. (2014). Recent and future developments in targeted therapy. Psoriasis, 249-267. https://doi.org/10.1002/9781118661796.ch23

Sekhar, E. C., Rao, K. K., Rao, K. M., & Kumar, S. P. (2016). A green approach to synthesize controllable silver nanostructures from Limonia acidissima for inactivation of pathogenic bacteria. Cogent Chemistry, 2(1). https://doi.org/10.1080/23312009.2016.1144296

Shah, M., Fawcett, D., Sharma, S., Tripathy, S., & Poinern, G. (2015). Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials, 8(11), 7278-7308. https://doi.org/10.3390/ma8115377

Stan, M., Popa, A., Toloman, D., Silipas, T., Vodnar, D. C., & Katona, G. (2015). Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts. https://doi.org/10.1063/1.4938454

Swain, A. K. (2016). Review on Green Synthesis of Silver Nanoparticles by Physical, Chemical and Biological Methods. International Journal of Scientific & Engineering Research, 7(10), 551-554. https://doi.org/10.14299/ijser.2016.10.008

Vadia, N., & Rajput, S. (2012). Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement. European Journal of Pharmaceutical Sciences, 45(1-2), 8-18. https://doi.org/10.1016/j.ejps.2011.10.016

Wang, X., Feng, J., Bai, Y., Zhang, Q., & Yin, Y. (2016). Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chemical Reviews, 116(18), 10983-11060. https://doi.org/10.1021/acs.chemrev.5b00731

Downloads

Published

2017-11-08

How to Cite

Reddy, K., Rami Reddy, Y., Sekhar, E., & Babu, L. (2017). GREEN SYNTHESIS OF CU(OH)2 NANOMATERIALS USING NYMPHAEA RUBRA LEAVES EXTRACT AND THEIR ANTIBACTERIAL ACTIVITY . MATTER: International Journal of Science and Technology, 3(2), 478–492. https://doi.org/10.20319/mijst.2017.32.478492