CONVERSION OF RICE STRAW TO FERMENTABLE SUGARS AND BIOETHANOL BY MFEX PRETREATMENT AND SEQUENTIAL FERMENTATION

Authors

  • Bahaa Talaat Shawky Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Bohouth Street (former El Tahrir Street), Dokki, Giza, 12622, Egypt

DOI:

https://doi.org/10.20319/mijst.2017.32.356380

Keywords:

Rice Straw, MFEX Pretreatment, Enzyme Cocktail, Simultaneous Saccharification & Fermentation, Bioethanol

Abstract

The global rise in energy consumption, predicted increase in energy demands, price fluctuations, depletion and drawbacks of fossil fuels have converged to create an urgent need to develop more sustainable energy systems based on renewable feedstocks. Lignocellulosic materials are attractive feedstocks for bioethanol production. Rice straw is a promising feedstock for sustained production of biofuel. Bioethanol from lignocellulosic biomass could be a promising technology though the process has several challenges such as efficient pretreatment methods for delignification of lignocellulosics. Pretreatment is a prerequisite step for increasing the enzymatic digestibility for conversion to biofuels in biorefineries. The merits of a new and promising pretreatment called Multipurpose Fiber Expansion (MFEX) method for pretreating rice straw for bioethanol production was studied, where rice straw was treated with steam and carbon dioxide in sequence to make use of the synergistic effects obtained under pressure and moderate temperature for a few minutes and then rapidly releasing the pressure. A total reducing sugars of 645mg/g dry treated rice straw was achieved within 24 hours hydrolysis using laboratory prepared cocktail cellulolytic and hemicellulolytic enzymes. Of this total, 400 mg/g was glucose, which was rapidly fermented within 24 hours by a genetically-engineered Klebsiella oxytoca P2 leading to bioethanol yield of 375 mg/g dry treated biomass. Biofuels provide a potential and promising green alternative to avoid the global environmental crises that arise from dependence on fossil fuels. Conversion of glucose as well as xylose to bioethanol needs some improved co-fermentation technologies, to make the whole process cost effective.

References

Agblevor, F.A., Batz, S. & Trumbo, J. (2003). Composition and Ethanol Production Potential of Cotton Gin Residues. Appl. Biochem. Biotechnol. 105-108, 219-230. https://doi.org/10.1385/ABAB:105:1-3:219

Bahaa T.S., Bruce E.D., & Sultan R. )1996( . Hydrolysis of AFEX-treated lignocellulosic biomass By crude cellulases

followed by fuel ethanol Production by Klebsiella oxytoca. Bioenergy’ 96. The Seventh National Bioenergy Conference. September 15-19, 1996, Nashville, Tennessee, U.S.A.

Bahaa T. Shawky, Manal G. Mahmoud, Eman A. Ghazy, Mohsen M. S. Asker, & Ghada S. Ibrahim (2011). Enzymatic hydrolysis of rice straw and corn stalks for monosugars production. Journal of Genetic Engineering and Biotechnology 9: 59-63 https://doi.org/10.1016/j.jgeb.2011.05.001

Bahaa T. Shawky, Patent registered at ASRT [ No. 24507 / 2009 ] «Method and multipurpose apparatus for lignocellulosic materials pretreatment, to enhancesubsequent enzymatic hydrolysis for producing fermentable sugars and ethanol»

Bailey, M.J. , Biely, P. & Poutanen, K. (1992) . Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23 (3), 257-270. https://doi.org/10.1016/0168-1656(92)90074-J

Belkacemi, K., Turcotte, G., de Halleux, D. & Savoie, P. (1996). In Liquid Fuels and Industrial Products from Renewable Resources, Proceedings of the Liquid Fuel Conference, Nashville, TN, ASAE St-Joseph, pp 232-240.

Bhattacharyya, S. Khowala, S. Kumar, A. & Sengupta, S. (1997). Purification and characterization of an extracellular ß-xylosidase of Termitomyces clypeatus. Biotechnology Progress 13, 882. https://doi.org/10.1021/bp970099m

Binod, P. Sindhu, R. Singhania, R.R. Vikram, S. Devi, L. Nagalakshmi, S. Kurien, N. Sukumaran, R.K. & Pandey, A. (2010) . Bioethanol production from rice straw: an overview. Bioresour Technol. 101(13): 4767–4774. https://doi.org/10.1016/j.biortech.2009.10.079

Bisset, F., & Sternberg, D. (1978). Immobilization of Aspergillus ß- glucosidase on chitosan. Appl. Environ. Microbiol. 35: 750-755.

Cao, S. &Aita, G.M. )2013(. Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Bioresour Technol. 131: 357–364. https://doi.org/10.1016/j.biortech.2012.12.170

Casey, E. Sedlak, M., Ho, N.W. & Mosier, N.S. ) 2010( . Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 10: 385–393. https://doi.org/10.1111/j.1567-1364.2010.00623.x

Chadha, B.S. Kanwar, S.S. & Garcha, H.S. ( 1995). Simultaneous saccharification and

fermentation of rice straw into ethanol. Acta Microbiol. Immunol. Hungarica 42, 71–75.

Chittibabu, S. Ravoof, S.A. Pratheepa, K. &Supassri, T. )2012( .Enhancing enzymatic hydrolysis of ricestraw using microwave assisted nitric acid pretreatment. Int J Med Biosci. 1(3): 13–17.

David W. Templeton (1994). Determination of ethanol concentration in biomass to ethanol fermentation supernatants by Gas Chromatography, NREL, Laboratory Analytical Procedures #011

De La Rosa, L.B. Reshamwala, S. Latimer, V.M. Shawky, B.T. Dale, B.E. & Stuart, E.D. (1994). Integrated production of ethanol fuel and protein from coastal bermudagrass. Applied Biochemistry and Biotechnology 45/46: 483-497. https://doi.org/10.1007/BF02941823

Demirbas, A. (2003). Energy and environmental issues relating to greenhouse gas emissions inTurkey. Energy Convers Manag. 44: 201–13. https://doi.org/10.1016/S0196-8904(02)00056-0

Duff, S.J.B. Cooper, D.G. & Fuller, O.M. (1985). Cellulase and β-glucosidase production by mixed culture of Trichoderma reesei rut C30 and Aspergillus phoenicis. Biotech. Lett. 7: 185-190. https://doi.org/10.1007/BF01027817

Eriksson, K. E. (1979). Biosynthesis of polysaccharases. P. 285-296. In R. C. W. Berkeley, G. W. Gooday, and D. C. Ellwood (ed.), Microbial polysaccharides and polysaccharases. Academic Press, Ltd., London.

Ezeonu, Chukwuma Stephen (2016) Lignocelluloses, saccharides and bio-ethanol yields in fungal di-culture treated rice husk. MATTER: International Journal of Science and Technology ISSN 2454-5880. Matter Vol. 2 Issue 1, pp. 21-31 .

García, A. Cara, C. Moya, M. Rapado ,J. Puls ,J. Castro, E. &Martín, C.) 2014(.Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Jatropha curcas fruit hells for ethanol production. Ind Crop Prod. 53: 148–153. https://doi.org/10.1016/j.indcrop.2013.12.029

Ghose, T.K. (1987). Measurement of cellulase activities. Pure and Appl. Chem. 59:257-268. https://doi.org/10.1351/pac198759020257

Hahn-Hagerdal, B. Karhumaa, K. Fonseca, C. Spencer-Martins, I. & Gorwa- Grauslund, M. (2007). Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol. 74: 937–53. https://doi.org/10.1007/s00253-006-0827-2

Jinfeng, Li. , Ming-Huang, Wang. & Yuh-Shan, Ho. (2011). Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Global and Planetary Change 77: 13–20. https://doi.org/10.1016/j.gloplacha.2011.02.005

Kim, K.H. &Hong, J. (2001). Supercritical CO2 pretreatment of lignocelluloses enhances enzymatic cellulose hydrolysis. Bioresour Technol 77: 139–144 Kordowska-wiater, M. & Targonski, Z. (2002). Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Acta Microbiol. Pol. 51, 345–352.

Luria, S.E. & Delbrück,M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491-511.

Mandels, M., Andreotti, R.E., & Roche, C. (1976) . Measurement of saccharifying cellulases. Biotechnol. Bioeng. Symp. 6: 21-33.

Mandels, M., Medeiros, J.E., Andreotti, R.E., & Bissett, F.H. (1981). Enzymatic hydrolysis of cellulose: Evaluation of cellulase culture filtrates under useconditions. Biotechnol. Bioengin. 23: 200-202https://doi.org/10.1002/bit.260230907

Manual of Microbiological Methods: Society of American Bacteriologists. McGraw Hill Book Co., Inc., New York 1957.

Markou, G., Angelidaki, I. , Nerantzis, E. & Georgakakis, D. (2013). Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis. Energies 6: 3937-3950https://doi.org/10.3390/en6083937

Menon, V. &Rao, M. )2012(. Trends in bioconversion of lignocelluloses: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci.38(4): 522–550. https://doi.org/10.1016/j.pecs.2012.02.002

Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31 (1): 426-428. https://doi.org/10.1021/ac60147a030

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., &Ladisch, M.,) 2005(. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96: 673–686. https://doi.org/10.1016/j.biortech.2004.06.025

Pal, S. Banik, S.P. Ghorai, S. Chowdhury, S., &Khowala, S.( 2010). Purification and characterization of a thermostable intra-cellular ß-glucosidase with transglycosylation properties from filamentous fungus Termitomyces clypeatus. Bioresource Technology 101, 2412–2420. https://doi.org/10.1016/j.biortech.2009.11.064

Quadrelli, E.A. Centi, G. Duplan, J. Perathoner, S. (2011). Carbon dioxide recycling: emerging large-scale technologies with industrial potential. Chem Sus Chem 4: 1194–1215https://doi.org/10.1002/cssc.201100473

Reshamwala, S. Shawky, B.T. & Dale, B.E. (1995). Ethanol production from enzymatic hydrolysates of AFEX-treated coastal bermudagrass and switchgrass. Applied Biochemistry and Biotechnology 51/52: 43-55. https://doi.org/10.1007/BF02933410

Schell, D.J., McMillan, J.D., Philippidis, G.P., Hinman, N.D., & Riley, C. (1992). Ethanol from lignocellulosic biomass. Adv. In Solar Energy. 7, 373-448.

Shawky, B. Kasulke, U. Philipp, B. Schulz, G. & Hirte, W. (1984) Sorption of Penicillium-cellulase on cellulose and lignin. Acta Biotechnol. 4: 267-274. https://doi.org/10.1002/abio.370040308

Shawky,B.T. & Hickisch, B. (1984 a). Cellulolytic activity of Cytophaga sp. Strain N, grown on various cellulose substrates. Zbl. Mikrobiol. 139: 83-89

Shawky,B.T. & Hickisch, B. (1984 b). Cellulolytic activity of Trichoderma sp. Strain G, grown on various cellulose substrates. Zbl. Mikrobiol. 139: 91-96.

Shin, C.S., Lee, J.P., Lee, J.S., & Park, S.C. (2000). Enzyme production of Trichodereesei Rut C-30 on various lignocellulosic substrates. Applied Biochemistry and Biotechnology 84-86: 237-245. https://doi.org/10.1385/ABAB:84-86:1-9:237

Singh, R. Shukla, A. Tiwari, S. &Srivastava, M. )2014(. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev. 32: 713–728. https://doi.org/10.1016/j.rser.2014.01.051

Snedecor, G.W. & Cochran, W.G. (1980). Statistical Methods, seventh ed. Iowa State University Press, Ames, IA, USA.

Song, H. Dotzauer, E. Thorin, E. &Yan, J. )2014(. Techno-economic analysis of an integrated biorefinery system for poly-generation of power, heat, pellet and bioethanol Int J Energy Res. 38: 551–63. https://doi.org/10.1002/er.3039

Srivastava, S. K. , Ramachandran, K. B. , & Gopalkrishnan, K. S. (1981). ß –glucosidase production by Aspergillus wentii in stirred tank bioreactors. Biotechnology Letters, 3 (9), 477-480. https://doi.org/10.1007/BF00147557

Sun, S.L. Wen J.L. Ma M.G. & Sun, R.C. (2014). Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments. Appl Energy. 136: 519–526. https://doi.org/10.1016/j.apenergy.2014.09.068

Sun, Y. &Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production. areview.Bioresour Technol. 83: 1–11. https://doi.org/10.1504/IJMPT.2002.001320

Suriyachai, N. Weerasaia, K. Laosiripojana, N. Champreda, V. & Unrean , P. (2013). Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresour Technol. 142: 171–178. https://doi.org/10.1016/j.biortech.2013.05.003

Taheradeh, M.J & Niklasson, C. (2004). Ethanol from lignocellulosic materials: pre-treatment, acid and enzymatic hydrolyses and fermentation. In: Saha BC, Hayashi K, editors. Lignocellulosic biodegradation. Washington DC: American Chemical Societyhttps://doi.org/10.1021/bk-2004-0889.ch003

United Nations Organization for Food and Agriculture, Study Forest: 154, 2008. Forest and Energy, Key Issues. Rome

Wood, B. & Ingram, L. (1992). Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl. Environ. Microbiol. 58, 2103–2110.

Downloads

Published

2017-10-31

How to Cite

Shawky, B. T. (2017). CONVERSION OF RICE STRAW TO FERMENTABLE SUGARS AND BIOETHANOL BY MFEX PRETREATMENT AND SEQUENTIAL FERMENTATION . MATTER: International Journal of Science and Technology, 3(2), 356–380. https://doi.org/10.20319/mijst.2017.32.356380