CELLULAR ORGANISM BASED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR COMPLEX NON-LINEAR PROBLEMS

Authors

  • P Subashini Professor Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
  • T T Dhivyaprabha Research Scholar, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
  • M Krishnaveni Assistant Professor, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India

DOI:

https://doi.org/10.20319/mijst.2017.32.209229

Keywords:

Cellular Organism, Computational Model, Moving Peak Benchmark Function, Particle Swarm Optimization (PSO), Optimization, Population Structure

Abstract

Particle Swarm Optimization (PSO) is the global optimization technique that inspires many researchers to solve large scale of non-linear optimization problems. For certain complex scenarios, the premature convergence problem of PSO algorithm cannot find global optimum in dynamic environments. In this paper, a new variant motility factor based Cellular Particle Swarm Optimization (m-CPSO) algorithm is proposed which is developed by the migration behavior observed from fibroblast cellular organism to overcome this problem. The proposed m-CPSO algorithm is modeled in two different social best and individual best models. The performance of m-CPSO is tested in the benchmark and real-time data instances and compared with classical PSO. The outcome of experimental results has demonstrated that m-CPSO algorithm produces promising results than classical PSO on all evaluated environments.

References

Aleta, C., Fabregas, Bobby, D., Gerardo, Bartolome Tanguilig, T. (2016). Modified selection of initial centroids for k- means algorithm. MATTER: International Journal of Science and Technology, 2(2), 48-64.

Ben Niu, Yunlong Zhu, Xiaoxian He, Henry Wu. (2007). MCPSO: a multi-swarm cooperative particle swarm optimizer. Elsevier Applied Mathematics and Computation, 185(2), 1050 -1062. http://dx.doi.org/10.1016/j.amc.2006.07.026.

David Aha, W., Heart disease data set.http://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data.1988.385281.

Davoud Sedighizadeh, Ellips Masehian.(2009). Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 1(5), pp. 1793-8201.

Frans van den Bergh, AndriesEngelbrecht, P. (2002). A new locally convergent particle swarm optimiser. IEEE International conference on Systems, Man and Cybernetics. 3, 1-6.

Hesam Izakian, Behrouz TorkLadani, Ajith Abraham, Vaclav Snasel. (2010). A discrete particle swarm optimization for grid job scheduling.International of Innovative Computing, Information and Control, 6(9), 1-9.

Howard Stebbings. (2001). Cell motility.Encyclopaedia of Life Sciences.1-6.

Iman Rezazadeh, Mohammad Reza Meybodi, Ahmad Naebi. (2011). Adaptive particle swarm optimization algorithm for dynamic environments. Springer LNCS, 6728. 120-129. http://dx.doi.org/10.1007/978-3-642-21515-5_15.

James McCaffrey, D. (2012). Simulated protozoa optimization. IEEE IRI, 179-184.

James Kennedy, Rui Mendes. (2002). Population structure and particle swarm performance. Proceedings of the Congress on Evolutionary Computation, 2, 1671-1676. http://dx.doi.org/10.1109/CEC.2002.1004493.

John Dallon, C., Jonathan Sherratt, A. (1998). A mathematical model for fibroblast and collagen orientation. Bulletin of Mathematical Biology, 60, 101-129.

John Dallon, Jonathan Sherratt, Philip Maini, Mark Ferguson. (2000). Biological implications of a discrete mathematical model for collagen deposition and alignment in dermal wound repair.IMA Journal of Mathematics Applied in Medicine and Biology,17, 379-393.

Krishnaveni, M., Subashini, P., Dhivyaprabha, T.T. (2015). Efficient removal of impulse noise in tamil sign language digital images using pso based weighted median filter. International Journal of Applied Engineering and Research, 10(19), 40474-40480.

Krishnaveni, M., Subashini, P., Dhivyaprabha, T.T. (2016). Improved canny edges using cellular based particle swarm optimization technique for tamil sign digital images. International Journal of Electrical and Computer Engineering,6(5), 2158-2166.http://dx/doi.org/10.11591/ijece.v6i5.11222.

Li-Yeh Chuang, Hsueh-Wei Chang, Chung-JuiTu, Cheng-Hong Yang. (2008). Improved binary pso for feature selection using gene expression data.Elsevier Computational Biology and Chemistry, 32(1), 29-37.

Momin Jamil, Xin-She Yang. (2013). A literature survey of benchmark functions for global optimization problems. International Journal of Mathematical Modelling and Numerical Optimisation,4(2), 150–194. http://dx.doi.org/10.1504/IJMMNO.2013.055204.

Moser, I., Chiong, R. (2013). Dynamic function optimization: the moving peaks benchmark. E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, chapter 3, 433, 35–59.

Nilesh Loya, Avinash Keskar, G. (2015). Hybridization of algorithm for restoration of impulse noise image.Elsevier Procedia Computer Science, 54, 728-737.

Peter Rodemann, H., Hans-Oliver Rennekampff. (2011). Functional diversity of fibroblasts. M. M. Mueller, N. E. Fusenig (eds.), Tumor-Associated Fibroblasts and their Matrix, The Tumor Microenvironment 4, Chapter 2, 23-36. http://dx.doi.org/10.1007/978-94-007-0659-02.

Paul Di Milla, A., Kenneth Barbee, Douglas Lauffenburger, A. (1991). Mathematical model for the effects of adhesion and mechanics on cell migration speed.Journal of Biophys, 60, 15-37.

Riccardo Poli, James Kennedy, Tim Blackwell. (2007). Particle swarm optimization an overview. Springer Swarm Intelligence, 1(1), 33-57. http://dx.doi.org/10.1007/s11721-007-0002-0.

Subha Rajam, P., Balakrishnan, G. (2012). Recognition of tamil sign language alphabet using image processing to aid deaf- dumb people. Elsevier Procedia Engineering, 30, 861-868.

Tanweer, M.R., Suresh, S., Sundararajan, N.(2015). Self regulating particle swarm optimization algorithm. Elsevier Information Science,294(10), 182–202. http://dx.doi.org/10.1016/j.ins.2014.09.053.

Tanweer, M.R., Abdullah Al-Dujaili, Suresh, S. (2016). Empirical assessment of human learning principles inspired pso algorithms on continuous black-box optimization testbed. Springer LNCS 9873, 17–28. http://dx.doi.org/10.1007/978-3-319-48959-9_2.

Vaclav Snasel, Pavel Kromer, Ajith Abraham. (2013). Particle swarm optimization with protozoicbehaviour.IEEE International Conference on Systems, Man, and Cybernetics, 2026-2030.

Yaochu Jin, Jurgen Branke. (2005). Evolutionary optimization in uncertain environments – a survey. IEEE Transaction on Evolutionary Computation, 9, 303-317.

http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

Downloads

Published

2017-09-23

How to Cite

Subashini, P., Dhivyaprabha, T., & Krishnaveni, M. (2017). CELLULAR ORGANISM BASED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR COMPLEX NON-LINEAR PROBLEMS . MATTER: International Journal of Science and Technology, 3(2), 209–229. https://doi.org/10.20319/mijst.2017.32.209229