TRANSIENT ANALYSIS OF A COMPRESSED AIR ENERGY STORAGE SYSTEM

Authors

  • Juan Pedro Pérez-Trujillo University of Guanajuato, DICIS, Mechanical Engineering Department, Carretera Salamanca-Valle de Santiago, km. 3.5+1.8, Palo Blanco, Salamanca, Guanajuato, 36885, Mexico
  • Gregory J. Kowalski Northeastern University, 360 Huntington Avenue, Boston, Massachusets 02115, USA
  • Francisco Elizalde-Blancas University of Guanajuato, DICIS, Mechanical Engineering Department, Carretera Salamanca-Valle de Santiago, km. 3.5+1.8, Palo Blanco, Salamanca, Guanajuato, 36885, Mexico

DOI:

https://doi.org/10.20319/mijst.2017.32.145164

Keywords:

Transient Analysis, CAES, Energy Storage, Numerical Solution, Compressor, Turbine

Abstract

A transient energy analysis was performed in a Compressed Air Energy Storage (CAES) system. The aim is to perform a parametric analysis to determine the efficiency and output energy depending on some designparameters as the number of tanks connected in parallel, the insulation thickness, the storage time and the outflow. Mass and energy balanceswere carried out on every component of the system,the resulting equationsfrom the analysis weresolved numerically using the explicit Euler’s method. The system operating forashort storage timepresentsa higher efficiency (about 42.38%) with insulated tanks, however it is lower (about 23.54%) for long storage timeandnon-insulatedtanks. Nevertheless, when the system with insulated tanks reaches the steady state, i.e., for long storage time, its efficiency is almost half that onewith tanks without insulation, 11.5% and 23.54%, respectively. These results indicate that for short storage times is better to insulate the tanks and for longer storage times is more convenient no insulation

References

Akinyele, D. O., & Rayudu, R. K. (2014). Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments, 8, 74-91. https://doi.org/10.1016/j.seta.2014.07.004

Beaudin, M., Zareipour, H., Schellenberglabe, A., & Rosehart, W. (2010). Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 14, 302-314. https://doi.org/10.1016/j.esd.2010.09.007

Budt, M., Wolf, D., Span, R., & Yan, J. (2016). A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy, 170, 250-268. https://doi.org/10.1016/j.apenergy.2016.02.108

Charan, C. R., Laxmi, A. J., & Sangeetha, P. (2017). OPTIMIZED ENERGY EFFICIENT SOLUTION WITH STAND ALONE PV SYSTEM. MATTER: International Journal of Science and Technology, 3. https://dx.doi.org/10.20319/Mijst.2017.31.1627

de Boer, H. S., Grond, L., Moll, H., & Benders, R. (2014). The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels. Energy, 72, 360-370. https://doi.org/10.1016/j.energy.2014.05.047

Guo, C., Xu, Y., Zhang, X., Guo, H., Zhou, X., Liu, C., . . . Chen, H. (2017). Performance Analysis of Compressed Air Energy Storage Systems Considering Dynamic Characteristics of Compressed Air Storage. Energy. https://doi.org/10.1016/j.energy.2017.06.145

Hoffman, J. D., & Frankel, S. (2001). Numerical methods for engineers and scientists. CRC press.

Huang, Y., Keatley, P., Chen, H. S., Zhang, X. J., Rolfe, A., & Hewitt, N. J. (2017). Techno-economic study of compressed air energy storage systems for the grid integration of wind power. International Journal of Energy Research. https://doi.org/10.1002/er.3840

Jannelli, E., Minutillo, M., Lavadera, A. L., & Falcucci, G. (2014). A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology. Energy, 78, 313-322. https://doi.org/10.1016/j.energy.2014.10.016

Kaya, M., Tari, I., & Baker, D. K. (2016). Numerical Comparison and Sizing of Sensible and Latent Thermal Energy Storage for Compressed Air Energy Storage Systems. ASME 2016 International Mechanical Engineering Congress and Exposition, (págs. V06BT08A048--V06BT08A048). https://doi.org/10.1115/IMECE2016-66145

Klein, S. A., & Nellis, G. (2013). Mastering EES. F-Chart Software.

Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511-536. https://doi.org/10.1016/j.apenergy.2014.09.081

Luo, X., Wang, J., Krupke, C., Wang, Y., Sheng, Y., Li, J., . . . Chen, H. (2016). Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage. Applied energy, 162, 589-600. https://doi.org/10.1016/j.apenergy.2015.10.091

Mahlia, T. M., Saktisahdan, T. J., Jannifar, A., Hasan, M. H., & Matseelar, H. S. (2014). A review of available methods and development on energy storage; technology update. Renewable and Sustainable Energy Reviews, 33, 532-545. https://doi.org/10.1016/j.rser.2014.01.068

Mancherter Tank Co. (2017). Obtenido de http://www.mantank.com/

Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2010). Fundamentals of engineering thermodynamics. John Wiley & Sons.

Nikolakakis, T., & Fthenakis, V. (2017). The Value of Compressed-Air Energy Storage for Enhancing Variable-Renewable-Energy Integration: The Case of Ireland. Energy Technology. https://doi.org/10.1002/ente.201700151

Rogers, A., Henderson, A., Wang, X., & Negnevitsky, M. (2014). Compressed air energy storage: Thermodynamic and economic review. PES General Meeting| Conference & Exposition, 2014 IEEE, (págs. 1-5). https://doi.org/10.1109/PESGM.2014.6939098

Shakeri, M., Soltanzadeh, M., Berson, R. E., & Sharp, M. K. (2014). Comparison of Energy Storage Methods for Solar Electric Production. ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, (págs. V001T02A008--V001T02A008). https://doi.org/10.1115/ES2014-6347

Soltan, B. K., & Thorman, B. (2017). BUILDING ENERGY SYSTEMS OPERATION OPTIMIZATION WITH ICE STORAGE--A REAL TIME APPROACH. MATTER: International Journal of Science and Technology, 3.

Szablowski, L., Krawczyk, P., Badyda, K., Karellas, S., Kakaras, E., & Bujalski, W. (2017). Energy and exergy analysis of adiabatic compressed air energy storage system. Energy. https://doi.org/10.1016/j.energy.2017.07.055

Yang, Z., Wang, Z., Ran, P., Li, Z., & Ni, W. (2014). Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power. Applied Thermal Engineering, 66, 519-527. https://doi.org/10.1016/j.applthermaleng.2014.02.043

Zhao, H., Wu, Q., Hu, S., Xu, H., & Rasmussen, C. N. (2015). Review of energy storage system for wind power integration support. Applied Energy, 137, 545-553. https://doi.org/10.1016/j.apenergy.2014.04.103

Zhao, P., Gao, L., Wang, J., & Dai, Y. (2016). Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines. Renewable Energy, 85, 1164-1177. https://doi.org/10.1016/j.renene.2015.07.095

Downloads

Published

2017-09-18

How to Cite

Pérez-Trujillo, J., Kowalski, G., & Elizalde-Blancas , F. (2017). TRANSIENT ANALYSIS OF A COMPRESSED AIR ENERGY STORAGE SYSTEM . MATTER: International Journal of Science and Technology, 3(2), 145–164. https://doi.org/10.20319/mijst.2017.32.145164