TRANSIENT ANALYSIS OF A COMPRESSED AIR ENERGY STORAGE SYSTEM
DOI:
https://doi.org/10.20319/mijst.2017.32.145164Keywords:
Transient Analysis, CAES, Energy Storage, Numerical Solution, Compressor, TurbineAbstract
A transient energy analysis was performed in a Compressed Air Energy Storage (CAES) system. The aim is to perform a parametric analysis to determine the efficiency and output energy depending on some designparameters as the number of tanks connected in parallel, the insulation thickness, the storage time and the outflow. Mass and energy balanceswere carried out on every component of the system,the resulting equationsfrom the analysis weresolved numerically using the explicit Euler’s method. The system operating forashort storage timepresentsa higher efficiency (about 42.38%) with insulated tanks, however it is lower (about 23.54%) for long storage timeandnon-insulatedtanks. Nevertheless, when the system with insulated tanks reaches the steady state, i.e., for long storage time, its efficiency is almost half that onewith tanks without insulation, 11.5% and 23.54%, respectively. These results indicate that for short storage times is better to insulate the tanks and for longer storage times is more convenient no insulationReferences
Akinyele, D. O., & Rayudu, R. K. (2014). Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments, 8, 74-91. https://doi.org/10.1016/j.seta.2014.07.004
Beaudin, M., Zareipour, H., Schellenberglabe, A., & Rosehart, W. (2010). Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 14, 302-314. https://doi.org/10.1016/j.esd.2010.09.007
Budt, M., Wolf, D., Span, R., & Yan, J. (2016). A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy, 170, 250-268. https://doi.org/10.1016/j.apenergy.2016.02.108
Charan, C. R., Laxmi, A. J., & Sangeetha, P. (2017). OPTIMIZED ENERGY EFFICIENT SOLUTION WITH STAND ALONE PV SYSTEM. MATTER: International Journal of Science and Technology, 3. https://dx.doi.org/10.20319/Mijst.2017.31.1627
de Boer, H. S., Grond, L., Moll, H., & Benders, R. (2014). The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels. Energy, 72, 360-370. https://doi.org/10.1016/j.energy.2014.05.047
Guo, C., Xu, Y., Zhang, X., Guo, H., Zhou, X., Liu, C., . . . Chen, H. (2017). Performance Analysis of Compressed Air Energy Storage Systems Considering Dynamic Characteristics of Compressed Air Storage. Energy. https://doi.org/10.1016/j.energy.2017.06.145
Hoffman, J. D., & Frankel, S. (2001). Numerical methods for engineers and scientists. CRC press.
Huang, Y., Keatley, P., Chen, H. S., Zhang, X. J., Rolfe, A., & Hewitt, N. J. (2017). Techno-economic study of compressed air energy storage systems for the grid integration of wind power. International Journal of Energy Research. https://doi.org/10.1002/er.3840
Jannelli, E., Minutillo, M., Lavadera, A. L., & Falcucci, G. (2014). A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology. Energy, 78, 313-322. https://doi.org/10.1016/j.energy.2014.10.016
Kaya, M., Tari, I., & Baker, D. K. (2016). Numerical Comparison and Sizing of Sensible and Latent Thermal Energy Storage for Compressed Air Energy Storage Systems. ASME 2016 International Mechanical Engineering Congress and Exposition, (págs. V06BT08A048--V06BT08A048). https://doi.org/10.1115/IMECE2016-66145
Klein, S. A., & Nellis, G. (2013). Mastering EES. F-Chart Software.
Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511-536. https://doi.org/10.1016/j.apenergy.2014.09.081
Luo, X., Wang, J., Krupke, C., Wang, Y., Sheng, Y., Li, J., . . . Chen, H. (2016). Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage. Applied energy, 162, 589-600. https://doi.org/10.1016/j.apenergy.2015.10.091
Mahlia, T. M., Saktisahdan, T. J., Jannifar, A., Hasan, M. H., & Matseelar, H. S. (2014). A review of available methods and development on energy storage; technology update. Renewable and Sustainable Energy Reviews, 33, 532-545. https://doi.org/10.1016/j.rser.2014.01.068
Mancherter Tank Co. (2017). Obtenido de http://www.mantank.com/
Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2010). Fundamentals of engineering thermodynamics. John Wiley & Sons.
Nikolakakis, T., & Fthenakis, V. (2017). The Value of Compressed-Air Energy Storage for Enhancing Variable-Renewable-Energy Integration: The Case of Ireland. Energy Technology. https://doi.org/10.1002/ente.201700151
Rogers, A., Henderson, A., Wang, X., & Negnevitsky, M. (2014). Compressed air energy storage: Thermodynamic and economic review. PES General Meeting| Conference & Exposition, 2014 IEEE, (págs. 1-5). https://doi.org/10.1109/PESGM.2014.6939098
Shakeri, M., Soltanzadeh, M., Berson, R. E., & Sharp, M. K. (2014). Comparison of Energy Storage Methods for Solar Electric Production. ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, (págs. V001T02A008--V001T02A008). https://doi.org/10.1115/ES2014-6347
Soltan, B. K., & Thorman, B. (2017). BUILDING ENERGY SYSTEMS OPERATION OPTIMIZATION WITH ICE STORAGE--A REAL TIME APPROACH. MATTER: International Journal of Science and Technology, 3.
Szablowski, L., Krawczyk, P., Badyda, K., Karellas, S., Kakaras, E., & Bujalski, W. (2017). Energy and exergy analysis of adiabatic compressed air energy storage system. Energy. https://doi.org/10.1016/j.energy.2017.07.055
Yang, Z., Wang, Z., Ran, P., Li, Z., & Ni, W. (2014). Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power. Applied Thermal Engineering, 66, 519-527. https://doi.org/10.1016/j.applthermaleng.2014.02.043
Zhao, H., Wu, Q., Hu, S., Xu, H., & Rasmussen, C. N. (2015). Review of energy storage system for wind power integration support. Applied Energy, 137, 545-553. https://doi.org/10.1016/j.apenergy.2014.04.103
Zhao, P., Gao, L., Wang, J., & Dai, Y. (2016). Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines. Renewable Energy, 85, 1164-1177. https://doi.org/10.1016/j.renene.2015.07.095
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MATTER: International Journal of Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.