EFFECT OF GUP ON THE RADIAL COMPONENT OF THE KINETIC ENERGY

Authors

  • Fatemeh Ahmadi Department of physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran
  • Narges Karimizadeh Department of physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran

DOI:

https://doi.org/10.20319/mijst.2016.s11.312317

Keywords:

Generalized Uncertainty Principle, Equation of Motion, Kepler Potential

Abstract

Various theories of quantum gravity predict modifications of the Heisenberg uncertainty principle near the Planck scale, known as the generalized uncertainty principle (GUP). In this work, we study the effects of GUP on the equation of motion of a particle. Here, GUP preserves the rotational symmetry of the space-time. Then, considering the Kepler potential, we investigate the orbit motion of a particle and obtain the contribution of the radial component of the kinetic energy in this model. 

References

Ahmadi, F., & Khodagholizadeh, J. (2014). Effect of GUP on the Kepler problem and a variable minimal length, Can. J. Phys. 92: 484–487, doi.org/10.1139/cjp-2013-0354.

Ali, A. F., Das, S., & Vagenas, E. C. (2009). Discreteness of space from the generalized uncertainty principle, Phys. Lett.B, 678, 497. Doi: 10.1016/j, physletb, 2009.06.061.

Amati, D., Ciafaloni, M., &Veneziano, G. (1989).Can Space-time Be Probed Below the String Size, Phys. Lett.B, 216, 41. Doi: 10.1016/0370-2693(89)91366-x. http://dx.doi.org/ 10.10 16/0370-2693(89)91366-X

Benczik, S., Chang, L. N., Minic, D., Okamura, N., Rayyan, S.,& Takeuchi, T.(2002).Short Distance vs. Long Distance Physics: The Classical Limit of the Minimal Length Uncertainty Relation, Phys, Rev. D, 66,026003. Doi: 10.1103/ physRev D.66.026003.

Das, S., & Vagenas, E. C.(2008). Universality of Quantum Gravity Corrections, Phys. Rev. Lett. 101,221301, Doi:10.1103/PhysRevLett.101.221301. http://dx.doi.org/10.1103/PhysRevL ett.101.221301

Garay, L. J. (1995), Quantum gravity and minimum length, Int,J, Mod, phys. A, 10,145, Doi: 10, 1142/S0217751x95000085.

Kempf, A.,Mangano, G., & Mann, R. B. (1995).Hilbert Space Representation of the Minimal Length Uncertainty Relation, Phys. Rev. D, 52,1108. Doi: 10.1103/physRevD. 52, 1108.

Maggueijjo, J., & Smolin, L. (2002).Lorentz invariance with an invariant energy scale, Phys. Rev. Lett.88,190403.ArXiv:hep-th/0112090.

Maggueijjo, J., & Smolin, L. (2005).String theories with deformed energy momentum relations, and a possible non-tachyon bosonic string, Phys. Rev. D, 71, 026010.ArXiv:hep-th/0401087.

Maggiore, M.(1994).Quantum Groups, Gravity, and the Generalized Uncertainty Principle, Phys. Rev. D, 49,5182.ArXive: depth/9305163.

Pedram, P.(2010).A CLASS OF GUP SOLUTIONS IN DEFORMED QUANTUM MECHANICS, Int ,J, Mod. Phys, D, 19, 2003.Doi: 10.1142/S0218271810018153. http://dx.doi.org/10.1142/S0218271810018153

Downloads

Published

2015-07-15

How to Cite

Ahmadi, F., & Karimizadeh, N. (2015). EFFECT OF GUP ON THE RADIAL COMPONENT OF THE KINETIC ENERGY. MATTER: International Journal of Science and Technology, 1(1), 312–317. https://doi.org/10.20319/mijst.2016.s11.312317