EFFECT OF GUP ON THE RADIAL COMPONENT OF THE KINETIC ENERGY
DOI:
https://doi.org/10.20319/mijst.2016.s11.312317Keywords:
Generalized Uncertainty Principle, Equation of Motion, Kepler PotentialAbstract
Various theories of quantum gravity predict modifications of the Heisenberg uncertainty principle near the Planck scale, known as the generalized uncertainty principle (GUP). In this work, we study the effects of GUP on the equation of motion of a particle. Here, GUP preserves the rotational symmetry of the space-time. Then, considering the Kepler potential, we investigate the orbit motion of a particle and obtain the contribution of the radial component of the kinetic energy in this model.
References
Ahmadi, F., & Khodagholizadeh, J. (2014). Effect of GUP on the Kepler problem and a variable minimal length, Can. J. Phys. 92: 484–487, doi.org/10.1139/cjp-2013-0354.
Ali, A. F., Das, S., & Vagenas, E. C. (2009). Discreteness of space from the generalized uncertainty principle, Phys. Lett.B, 678, 497. Doi: 10.1016/j, physletb, 2009.06.061.
Amati, D., Ciafaloni, M., &Veneziano, G. (1989).Can Space-time Be Probed Below the String Size, Phys. Lett.B, 216, 41. Doi: 10.1016/0370-2693(89)91366-x. http://dx.doi.org/ 10.10 16/0370-2693(89)91366-X
Benczik, S., Chang, L. N., Minic, D., Okamura, N., Rayyan, S.,& Takeuchi, T.(2002).Short Distance vs. Long Distance Physics: The Classical Limit of the Minimal Length Uncertainty Relation, Phys, Rev. D, 66,026003. Doi: 10.1103/ physRev D.66.026003.
Das, S., & Vagenas, E. C.(2008). Universality of Quantum Gravity Corrections, Phys. Rev. Lett. 101,221301, Doi:10.1103/PhysRevLett.101.221301. http://dx.doi.org/10.1103/PhysRevL ett.101.221301
Garay, L. J. (1995), Quantum gravity and minimum length, Int,J, Mod, phys. A, 10,145, Doi: 10, 1142/S0217751x95000085.
Kempf, A.,Mangano, G., & Mann, R. B. (1995).Hilbert Space Representation of the Minimal Length Uncertainty Relation, Phys. Rev. D, 52,1108. Doi: 10.1103/physRevD. 52, 1108.
Maggueijjo, J., & Smolin, L. (2002).Lorentz invariance with an invariant energy scale, Phys. Rev. Lett.88,190403.ArXiv:hep-th/0112090.
Maggueijjo, J., & Smolin, L. (2005).String theories with deformed energy momentum relations, and a possible non-tachyon bosonic string, Phys. Rev. D, 71, 026010.ArXiv:hep-th/0401087.
Maggiore, M.(1994).Quantum Groups, Gravity, and the Generalized Uncertainty Principle, Phys. Rev. D, 49,5182.ArXive: depth/9305163.
Pedram, P.(2010).A CLASS OF GUP SOLUTIONS IN DEFORMED QUANTUM MECHANICS, Int ,J, Mod. Phys, D, 19, 2003.Doi: 10.1142/S0218271810018153. http://dx.doi.org/10.1142/S0218271810018153
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.