CARBON STOCK EVALUATION AND ITS POTENTIAL CARBON MARKET VALUE IN CAREY ISLAND MANGROVE FOREST, SELANGOR, MALAYSIA
DOI:
https://doi.org/10.20319/mijst.2016.s11.240258Keywords:
Mangrove, Carey Island, Biomass, Carbon Stock, Organic Carbon, Loss On Ignition, Carbon Market ValueAbstract
This study was carried out to examine the total carbon stock and its potential carbon market value at Carey Island mangrove forest, Selangor, Malaysia. Two sites were chosen: ODCC "by the sea" and Kg. Melayu "riverine" as they represent the dominant mangrove tree species, (Avicennia Alba, Rhizophora apiculata, Rhizophora mucronata and Xylocarpus granatum). Data collection was done across three seasons: Intermediate, dry and wet for both sites in order to get one year average. Sampled mangrove species were sorted out into leaves, stems, bark (aboveground), roots (belowground) and litter; sediment samples were collected at 0-10, 10-20 and 20-30 cm deep. Carbon organic content was determined using furnace (LOI) followed by a conversion factor of (1.724). Data obtained were utilized to compare the results between species, tree partitioning, soil depth, seasons and different settings. Results showed that carbon was more allocated in the dry season within the bark and 20-30 cm deep underground. In vegetations, results have revealed that carbon allocation was very similar (bark > stem > leaf >root) even though both sites represent different species. Litter carbon allocation was in the order of: propagules > leaf > branch in ODCC and branch > propagules > leaf in Kg.Melayu. In sediment, results brought to light that carbon allocation increases with soil depth. The total carbon stock was estimated at 648.73 (t/ha/yr) in ODCC and (600.18) t/ha/yr in Kg.Melayu with soil carbon stock representing 98% and 99% of the total carbon stock in ODCC and Kg. Melayu respectively. The total coverage of mangrove forest is Carey Island was estimated 182.72 ha using Arc GIS 10.1. The potential carbon market value for Carey Island was in a range of USD 0.6 – 21.8 million.
References
Aizpuru, M., Achard, F., & Blasco, F. (2000). Global assessment of cover change of the mangrove forests using satellite imagery at medium to high resolution. EEC research project(15017-1999), 05.
Alexeeva, V., & Anger, N. (2015). The globalization of the carbon market: Welfare and competitiveness effects of linking emissions trading schemes. Mitigation and Adaptation Strategies for Global Change, 1-26. http://dx.doi.org/10.1007/s11027-014-9631-y
Alongi, D. M. (2002). Present state and future of the world's mangrove forests. Environmental conservation, 29(03), 331-349. http://dx.doi.org/10.1017/S0376892902000231
Angelsen, A., & Brockhaus, M. (2009). Realising REDD+: National strategy and policy options: CIFOR.
Bayon, R., Hawn, A., & Hamilton, K. (2012). Voluntary carbon markets: an international business guide to what they are and how they work: Routledge.
Bernard, B. B., Bernard, H., & Brooks, J. M. (1995). Determination of total carbon, total organic carbon and inorganic carbon in sediments. TDI-Brooks International/B&B Labratories Inc. College Station, Texas, 1-5.
Bouillon, S., Borges, A. V., Castañeda‐Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J. (2008). Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22(2). http://dx.doi.org/10.1029/2007GB003052
Change, I. C. (2007). Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. UK and NEW YORK, USA: Cambridge University Press.
Chen, L., Zeng, X., Tam, N. F., Lu, W., Luo, Z., Du, X., & Wang, J. (2012). Comparing carbon sequestration and stand structure of monoculture and mixed mangrove plantations of Sonneratia caseolaris and S. apetala in Southern China. Forest Ecology and Management, 284, 222-229.http://dx.doi.org/10.1016/j.foreco.2012.06.058 http://dx.doi.org/ 10.1016/j. foreco.2012.01.033
Cummings, D., Kauffman, J. B., Perry, D. A., & Hughes, R. F. (2002). Aboveground biomass and structure of rainforests in the southwestern Brazilian Amazon. Forest Ecology and Management, 163(1), 293-307. http://dx.doi.org/10.1016/S0378-1127(01)00587-4
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature geoscience, 4(5), 293-297. http://dx.doi.org/10.1038/ngeo1123
Gullison, R. E., Frumhoff, P. C., Canadell, J. G., Field, C. B., Nepstad, D. C., Hayhoe, K., Avissar, R., Curran, L. M., Friedlingstein, P., Jones, C. D. (2007). Tropical forests and climate policy. SCIENCE-NEW YORK THEN WASHINGTON-, 316(5827), 985. http://dx.doi.org/10.1126/science.1136163
Hemati, Z., Hossain, M., Emenike, C. U., & Rozainah, M. Z. (2015). Rate of Carbon Storage in Soil of Natural and Degraded Mangrove Forest in Peninsular Malaysia. CLEAN–Soil, Air, Water, 43(4), 614-619. http://dx.doi.org/10.1002/clen.201400034
Houghton, Y. D., Griggs, D., Mouguer, M., van der Linden, P., Dai, X., Maskell, K., & Johnson, C. (2001). Climate Change 2001: Working Group I: The Scientific Basis: Cambridge University Press, Cambridge, UK.
Howard, J., Hoyt, S., Isensee, K., Telszewski, M., & Pidgeon, E. (2014). Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, Arlington, Virginia.
Huber, S., Prokop, G., Arrouays, D., Banko, G., Bispo, A., Jones, R., J. A., Kibblewhite, M. G., Lexer, W., Moller, A., Rickson, R. (2008). Environmental Assessment of Soil for Monitoring: Volume I, Indicators & Criteria. Office for the Official Publications of the European Communities, Luxembourg.
Kauffman, J. B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests: Center for International Forestry Research (CIFOR), Bogor, Indonesia.
Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A., & Donato, D. C. (2011). Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands, 31(2), 343-352. http: //dx .doi. org/10.1007/s13157-011-0148-9
Lang'at, J. K. S. (2013). Impacts of tree harvesting on the carbon balance and functioning in mangrove forests. Edinburgh Napier University.
Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., Philips, O. L., Reitsma, J. L., White, L., Comiskey, J. A. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003-1006.
Luyssaert, S., Inglima, I., Jung, M., Richardson, A., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global change biology, 13(12), 2509-2537. http://dx.doi.org/10.1111/j.1365-2486.2007.01439.x
Mitra, A., Sengupta, K., & Banerjee, K. (2011). Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. Forest Ecology and Management, 261(7), 1325-1335. http://dx.doi.org/10.1016/j.foreco.2011.01.012
Orihuela, B., Tovilla, H., & Franciscus, M. y Alvarez, L. (2004). Matter flux in a mangrove system in the coast of Chiapas, Mexico. Madera y Bosques, 2, 45-61.
Rodrigues, D. P., Hamacher, C., Estrada, G. C. D., & Soares, M. L. G. (2015). Variability of carbon content in mangrove species: Effect of species, compartments and tidal frequency. Aquatic Botany, 120, 346-351. http://dx.doi.org/10.1016/j.aquabot.2014.10.004
Santilli, M., Moutinho, P., Schwartzman, S., Nepstad, D., Curran, L., & Nobre, C. (2005). Tropical deforestation and the Kyoto Protocol. Climatic Change, 71(3), 267-276. http://dx.doi.org/10.1007/s10584-005-8074-6
Saraswathy, R., Rozainah, M., & Redzwan, G. (2009). Diversity and biomass estimation of mangrove trees on carey Island, Malaysia. Ecology, Environment and Conservation, 15(2), 205-211.
Schlesinger, W. H., & Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48(1), 7-20. http://dx.doi.org/10.1023/A:1006247623877
Sitoe, A. A., Mandlate, L. J. C., & Guedes, B. S. (2014). Biomass and carbon stocks of Sofala Bay mangrove forests. Forests, 5(8), 1967-1981. http://dx.doi.org/10.3390/f5081967
Tavoni, M., Sohngen, B., & Bosetti, V. (2007). Forestry and the carbon market response to stabilize climate. Energy Policy, 35(11), 5346-5353. http://dx.doi.org/10 .1016/j.en pol.2 006.01.036
Ullman, R., Bilbao-Bastida, V., & Grimsditch, G. (2013). Including blue carbon in climate market mechanisms. Ocean & Coastal Management, 83, 15-18. http://dx.doi.org/ 10. 1016/j.ocecoaman.2012.02.009
Van der Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G., Kasibhatla, P. S., Jackson, R. B., Collatz, G. J., Randerson, J. (2009). CO2 emissions from forest loss. Nature geoscience, 2(11), 737-738. http://dx.doi.org/10.1038/ngeo671
Wang, G., Guan, D., Peart, M., Chen, Y., & Peng, Y. (2013). Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong Province of South China. Forest Ecology and Management, 310, 539-546. http://dx.doi.org/10.1016/j.foreco.2013.08.045
Wilson, N. (2010). Biomass and Regeneration of Mangrove Vegetation in Kien Giang Province, Vietnam. Report to GTZ, 53.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.