STUDY OF TYPE OF ELECTROLYTE EFFECT ON PLATINUM ELECTRO-CATALYST PERFORMANCE PREPARED BY CYCLIC VOLTAMMETRY ELECTRODEPOSITION METHOD FOR GLUCOSE OXIDATION REACTION

Authors

  • Rasol Abdullah Mirzaie Fuel cell Research Laboratory, Dept. of chemistry, Faculty of science, Shahid Rajaee Teacher Training University, Tehran, Iran
  • Behnam Moeini Fuel cell Research Laboratory, Dept. of chemistry, Faculty of science, Shahid Rajaee Teacher Training University, Tehran, Iran

DOI:

https://doi.org/10.20319/mijst.2016.s11.91102

Keywords:

Platinum Electrocatalyst, Cyclic Voltammetry, Fuel Cell, Glucose Oxidation Reaction, Electrodeposition Method.

Abstract

There are several methods to prepare electro-catalysts for low temperature fuel cells. Platinum is used as a common electro-catalyst for this purpose. Electrodeposition method is applied for preparing platinum on modified carbon paper as electrode directly. Many parameters effect on performance of prepared electrodes. At this work, the effect of type of electrolyte in electrodeposition solution was investigated for making electro-catalyst that is be used as anode in Glucose Alkaline Air Fuel Cell (GAAFC). Cyclic voltammetry ((1.2-0.6) V vs. Ag/AgCl sat. KCl, 100 mV/S) is used as electrodeposition method. Number of CV cycles is varied 10 to 50. Electrodeposition was performed in two precursor solution (0.5 M) containing phosphate and sulfate anions. Platinum concentration in solution was 3 mM. The prepared electro-catalysts were studied for Glucose Oxidation Reaction (GOR) by CV analysis in 0.3 M glucose solution and 0.5 M KOH. Also, Electrochemical Impedance Spectroscopy (EIS) method was used. According our results, the type of anion in electrodeposition solution affects on properties of prepared platinum electro-catalyst for GOR. Optimized condition for number of CV cycles in phosphate and sulfate solutions is 10 and 40 respectively. 

References

Arjona, N., Guerra-Balcazar, M., Trejo, G., Ledesma-Garcia, J., & Arriaga, L. G. (2012). Electrochemical growth of Au architectures on glassy carbon and their evaluation toward glucose oxidation reaction. New Journal of Chemistry, 36(12), 2555-2561. doi:10.1039/C2NJ40666G

Basu, D., & Basu, S. (2010). A study on direct glucose and fructose alkaline fuel cell. Electrochimica Acta, 55(20), 5775-5779. doi:

http://dx.doi.org/10.1016/j.electacta.2010.05.016

Basu, D., & Basu, S. (2011). Synthesis and characterization of Pt–Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. International Journal of Hydrogen Energy, 36(22), 14923-14929. doi: http://dx.doi.org/10.1016/j.ijhydene.2011.03.042

Basu, D., Sood, S., & Basu, S. (2013). Performance comparison of Pt–Au/C and Pt–Bi/C anode catalysts in batch and continuous direct glucose alkaline fuel cell. Chemical Engineering Journal, 228, 867-870. doi: http://dx.doi.org/10.1016/j.cej.2013.05.049

Bockris, J. O. M., Piersma, B. J., & Gileadi, E. (1964). Anodic oxidation of cellulose and lower carbohydrates. Electrochimica Acta, 9(10), 1329-1332. doi: http://dx.doi.org/10.1016/0013-4686(64)87009-2

Chen, D., Tao, Q., Liao, L., Liu, S., Chen, Y., & Ye, S. (2011). Determining the Active Surface Area for Various Platinum Electrodes. Electrocatalysis, 2(3), 207-219. doi: 10.1007/s12678-011-0054-1

Chen, J., Zhao, C. X., Zhi, M. M., Wang, K., Deng, L., & Xu, G. (2012). Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochimica Acta, 66, 133-138. doi: http://dx.doi.org/10.1016/j.electacta.2012.01.071

Christina Bock, H. H. a. B. M. (2009). Catalyst Synthesis Techniques Delidovich, I. V., Moroz, B. L., Taran, O. P., Gromov, N. V., Pyrjaev, P. A., Prosvirin, I. P., . . .

Parmon, V. N. (2013). Aerobic selective oxidation of glucose to gluconate catalyzed by Au/Al2O3 and Au/C: Impact of the mass-transfer processes on the overall kinetics.

Chemical Engineering Journal, 223, 921-931. doi: http://dx.doi.org/10.1016/j.cej.2012.11.073

El-Refaei, S. M., Saleh, M. M., & Awad, M. I. (2013). Enhanced glucose electrooxidation at a binary catalyst of manganese and nickel oxides modified glassy carbon electrode. Journal of Power Sources, 223, 125-128. doi: http://dx.doi.org/10.1016/j.jpowsour.2012.08.098

Gharibi, H., Mirzaie, R. A., Shams, E., Zhiani, M., & Khairmand, M. (2005). Preparation of platinum electrocatalysts using carbon supports for oxygen reduction at a gas-diffusion electrode. Journal of Power Sources, 139(1–2), 61-66. doi: http://dx.doi.org/10.1016/j.jpowsour.2004.06.075

Habrioux, A., Servat, K., Girardeau, T., Guérin, P., Napporn, T. W., & Kokoh, K. B. (2011).

Activity of sputtered gold particles layers towards glucose electrochemical oxidation in alkaline medium. Current Applied Physics, 11(5), 1149-1152. doi: http://dx.doi.org/10.1016/j.cap.2011.02.008

Jin, C., & Chen, Z. (2007). Electrocatalytic oxidation of glucose on gold–platinum nanocomposite electrodes and platinum-modified gold electrodes. Synthetic Metals, 157(13–15), 592-596. doi: http://dx.doi.org/10.1016/j.synthmet.2007.06.010

Kerzenmacher, S., Ducrée, J., Zengerle, R., & von Stetten, F. (2008). Energy harvesting by implantable abiotically catalyzed glucose fuel cells. Journal of Power Sources, 182(1), 1-17. doi: http://dx.doi.org/10.1016/j.jpowsour.2008.03.031

Kerzenmacher, S., Kräling, U., Schroeder, M., Brämer, R., Zengerle, R., & von Stetten, F. (2010). Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes. Journal of Power Sources, 195(19), 6524-6531. doi: http://dx.doi.org/10.1016/j.jpowsour.2010.04.049

Kloke, A., Kohler, C., Gerwig, R., Zengerle, R., & Kerzenmacher, S. (2012). Cyclic electrodeposition of PtCu alloy: facile fabrication of highly porous platinum electrodes. Adv Mater, 24(21), 2916-2921. doi: 10.1002/adma.201200806

Pasta, M., Hu, L., La Mantia, F., & Cui, Y. (2012). Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells. Electrochemistry Communications, 19, 81-84. doi: http://dx.doi.org/10.1016/j.elecom.2012.03.019

Prilutsky, S., Schechner, P., Bubis, E., Makarov, V., Zussman, E., & Cohen, Y. (2010). Anodes for glucose fuel cells based on carbonized nanofibers with embedded carbon nanotubes. Electrochimica Acta, 55(11), 3694-3702. doi: http://dx.doi.org/10.1016/j.electacta.2010.02.005

Shamsipur, M., Najafi, M., & Hosseini, M.-R. M. (2010). Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry, 77(2), 120-124. doi: http://dx.doi.org/10.1016/j.bioelechem.2009.07.007

Yan, X., Ge, X., & Cui, S. (2011). Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Research Letters, 6(1), 1-6. doi: 10.1186/1556-276X-6-313

Zhang, H., Jiang, F., Zhou, R., Du, Y., Yang, P., Wang, C., & Xu, J. (2011). Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles. International Journal of Hydrogen Energy, 36(23), 15052-15059. doi: http://dx.doi.org/10.1016/j.ijhydene.2011.08.072

Zhang, H., & Toshima, N. (2013). Glucose oxidation using Au-containing bimetallic and trimetallic nanoparticles. Catalysis Science & Technology, 3(2), 268-278. doi: 10.1039/C2CY20345F

Downloads

Published

2015-07-01

How to Cite

Mirzaie, R. A., & Moeini, B. (2015). STUDY OF TYPE OF ELECTROLYTE EFFECT ON PLATINUM ELECTRO-CATALYST PERFORMANCE PREPARED BY CYCLIC VOLTAMMETRY ELECTRODEPOSITION METHOD FOR GLUCOSE OXIDATION REACTION. MATTER: International Journal of Science and Technology, 1(1), 91–102. https://doi.org/10.20319/mijst.2016.s11.91102