THE SUPERSTRING THEORY AND THE SHAPE OF PROTONS AND ELECTRONS

Authors

  • Gh. Saleh Saleh research centre, Shiraz, Fars, Iran
  • M. J. Faraji Saleh research centre, Shiraz, Fars, Iran
  • R. Alizadeh Saleh research centre, Shiraz, Fars, Iran
  • A. Dalili Saleh research centre, Shiraz, Fars, Iran

DOI:

https://doi.org/10.20319/mijst.2018.42.149157

Keywords:

Superstring Theory, Electron, Proton, Electron Radius, Proton Radius

Abstract

According to “Superstring Theory”, the electron and proton are made of similar tiny supersymmetric strings (Gefter, 2007; Green, Schwarz, & Witten, 2012; Schwarz, 1982; Sharma, 2010). In this paper we introduce a sample particle that is such tiny supersymmetric string or made of it and also we use scientific achievements of experiments about electron and proton specifications to verify and compare the electron and proton dimensions and masses with this sample. By using logical reasons, we reject one of the methods of measuring of electrons’ radius. Finally, using simple mathematical formulas, we prove that although the electrons and protons are both spherical, but one is hollow and the other is dense .

References

Gefter, A. (2007). String theory fights back. New Scientist, 195(2612), 30-34. https://doi.org/10.1016/S0262-4079(07)61773-4

Green, M. B., Schwarz, J. H., & Witten, E. (2012). Superstring Theory: Volume 2, Loop Amplitudes, Anomalies and Phenomenology: 25th Anniversary Edition: Cambridge University Press.

Haken, H., Brewer, W. D., & Wolf, H. C. (2012). The Physics of Atoms and Quanta: Introduction to Experiments and Theory: Springer Berlin Heidelberg.

Hans, D. (1988). A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius. Physica Scripta, 1988(T22), 102.

Hudson, J. J., Kara, D. M., Smallman, I. J., Sauer, B. E., Tarbutt, M. R., & Hinds, E. A. (2011). Improved measurement of the shape of the electron. Nature, 473, 493. doi:10.1038/nature10104 https://www.nature.com/articles/nature10104#supplementary-information https://doi.org/10.1038/nature10104

Millikan, R. A. (1911). The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes's Law. Physical Review (Series I), 32(4), 349-397. https://doi.org/10.1103/PhysRevSeriesI.32.349

Mohr, P. J., Newell, D. B., & Taylor, B. N. (2016). CODATA Recommended Values of the Fundamental Physical Constants: 2014. Journal of Physical and Chemical Reference Data, 45(4), 043102. https://doi.org/10.1063/1.4954402

Mohr, P. J., Taylor, B. N., & Newell, D. B. (2008). CODATA recommended values of the fundamental physical constants: 2006. Reviews of Modern Physics, 80(2), 633-730. https://doi.org/10.1103/RevModPhys.80.633

Pohl, R., Antognini, A., Nez, F., Amaro, F. D., Biraben, F., Cardoso, J. M. R., . . . Kottmann, F. (2010). The size of the proton. Nature, 466, 213. doi:10.1038/nature09250 https://www.nature.com/articles/nature09250#supplementary-information

Schwarz, J. H. (1982). Superstring theory. Physics Reports, 89(3), 223-322. https://doi.org/10.1016/0370-1573(82)90087-4

Sharma, R. R. (2010). The UNIFIED THEORY : A Complete Paradigm Shift in Physics and Cosmology: Lulu Enterprises Incorporated.

Weise, W. (1984). Quarks and nuclei. Singapore; Philadelphia: World scientific.

Downloads

Published

2018-09-06

How to Cite

Saleh, G., Faraji, M., Alizadeh, R., & Dalili, A. (2018). THE SUPERSTRING THEORY AND THE SHAPE OF PROTONS AND ELECTRONS . MATTER: International Journal of Science and Technology, 4(2), 149–157. https://doi.org/10.20319/mijst.2018.42.149157

Most read articles by the same author(s)