THE SUPERSTRING THEORY AND THE SHAPE OF PROTONS AND ELECTRONS
DOI:
https://doi.org/10.20319/mijst.2018.42.149157Keywords:
Superstring Theory, Electron, Proton, Electron Radius, Proton RadiusAbstract
According to “Superstring Theory”, the electron and proton are made of similar tiny supersymmetric strings (Gefter, 2007; Green, Schwarz, & Witten, 2012; Schwarz, 1982; Sharma, 2010). In this paper we introduce a sample particle that is such tiny supersymmetric string or made of it and also we use scientific achievements of experiments about electron and proton specifications to verify and compare the electron and proton dimensions and masses with this sample. By using logical reasons, we reject one of the methods of measuring of electrons’ radius. Finally, using simple mathematical formulas, we prove that although the electrons and protons are both spherical, but one is hollow and the other is dense .
References
Gefter, A. (2007). String theory fights back. New Scientist, 195(2612), 30-34. https://doi.org/10.1016/S0262-4079(07)61773-4
Green, M. B., Schwarz, J. H., & Witten, E. (2012). Superstring Theory: Volume 2, Loop Amplitudes, Anomalies and Phenomenology: 25th Anniversary Edition: Cambridge University Press.
Haken, H., Brewer, W. D., & Wolf, H. C. (2012). The Physics of Atoms and Quanta: Introduction to Experiments and Theory: Springer Berlin Heidelberg.
Hans, D. (1988). A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius. Physica Scripta, 1988(T22), 102.
Hudson, J. J., Kara, D. M., Smallman, I. J., Sauer, B. E., Tarbutt, M. R., & Hinds, E. A. (2011). Improved measurement of the shape of the electron. Nature, 473, 493. doi:10.1038/nature10104 https://www.nature.com/articles/nature10104#supplementary-information https://doi.org/10.1038/nature10104
Millikan, R. A. (1911). The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes's Law. Physical Review (Series I), 32(4), 349-397. https://doi.org/10.1103/PhysRevSeriesI.32.349
Mohr, P. J., Newell, D. B., & Taylor, B. N. (2016). CODATA Recommended Values of the Fundamental Physical Constants: 2014. Journal of Physical and Chemical Reference Data, 45(4), 043102. https://doi.org/10.1063/1.4954402
Mohr, P. J., Taylor, B. N., & Newell, D. B. (2008). CODATA recommended values of the fundamental physical constants: 2006. Reviews of Modern Physics, 80(2), 633-730. https://doi.org/10.1103/RevModPhys.80.633
Pohl, R., Antognini, A., Nez, F., Amaro, F. D., Biraben, F., Cardoso, J. M. R., . . . Kottmann, F. (2010). The size of the proton. Nature, 466, 213. doi:10.1038/nature09250 https://www.nature.com/articles/nature09250#supplementary-information
Schwarz, J. H. (1982). Superstring theory. Physics Reports, 89(3), 223-322. https://doi.org/10.1016/0370-1573(82)90087-4
Sharma, R. R. (2010). The UNIFIED THEORY : A Complete Paradigm Shift in Physics and Cosmology: Lulu Enterprises Incorporated.
Weise, W. (1984). Quarks and nuclei. Singapore; Philadelphia: World scientific.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.