EXPERIMENTAL INVESTIGATION AND MODELING OF MODIFICATION AGENT ON SURFACE PROPERTY OF AEROGEL PRODUCED VIA AMBIENT PRESSURE DRYING

Authors

  • Israa F. Al-Sharuee Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq

DOI:

https://doi.org/10.20319/mijst.2019.51.8598

Keywords:

Aerogel, Silylating Agent, Superhydrophobic Silica, Surface Free Energy, Contact Angle

Abstract

A crucial properties for hydrophobic silica aerogels such as surface free energy surface tension contact angle has been determines experimentally and theoretically in the present work, the modification was by hexamethyldisilazane (HMDZ) and trimethylchlorosilane (TMCS) with different concentration from 5% to 15% , two step acid base catalysis followed in preparation, using (TEOS) ethanol and [0.001M] hydrochloride acid with molar ratio was 1:2.8:0.19*10-3 respectively , the effect study upon analysis of FTIR spectra and the degree of hydrophobicity was estimated by contact angle measurements. The results refer that the contact angle of aerogel from 130 to 151 by modifying by HMDZ and from 122 to 153 by modifying by TMCS, Neumann’s and Young’s equation of state depend to determine surface free energy and surface tension of samples, while the specific surface area is measured by using the "Brunauer –Emmett–Teller (BET) method. Here, we have confirmed that the surface free energy of samples can be regulated in varied range from 4.4997 to 0.3115 and 4.1419 to 0.5112 mJ/m2 by adjusting their surface by TMCS and HMDZ. From results the modification with TMCS is best from HMDZ, theoretical part give a good results to estimate the important information about hydrophobic silica aerogel.

References

Du, A., Liu, M., Huang, S., Li, C., & Zhou, B. (2016). Failure analysis of hydrophilic and hydrophobic aerogels under liquid nitrogen thermal shock. Paper presented at the 2nd International Electronic Conference on Materials. https://doi.org/10.3390/ecm-2-B002

Feng, J., Nguyen, S. T., Fan, Z., & Duong, H. M. (2015). Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chemical Engineering Journal, 270, 168-175. https://doi.org/10.1016/j.cej.2015.02.034 https://doi.org/10.1016/j.ces.2015.03.042

Gurav, J. L., Jung, I.-K., Park, H.-H., Kang, E. S., & Nadargi, D. Y. (2010). Silica aerogel: synthesis and applications. Journal of Nanomaterials, 2010, 23. https://doi.org/10.1155/2010/409310

Gutzov, S., Danchova, N., Karakashev, S., Khristov, M., Ivanova, J., & Ulbikas, J. (2014). Preparation and thermal properties of chemically prepared nanoporous silica aerogels. Journal of Sol-Gel Science and Technology, 70(3), 511-516. https://doi.org/10.1007/s10971-014-3315-7

Han, H., Wei, W., Jiang, Z., Lu, J., Zhu, J., & Xie, J. (2016). Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 539-549. https://doi.org/10.1016/j.colsurfa.2016.09.056

He, S., Huang, Y., Chen, G., Feng, M., Dai, H., Yuan, B., & Chen, X. (2018). Effect of heat treatment on hydrophobic silica aerogel. Journal of Hazardous Materials.

Hu, W., Li, M., Chen, W., Zhang, N., Li, B., Wang, M., & Zhao, Z. (2016). Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 501, 83-91. https://doi.org/10.1016/j.colsurfa.2016.04.059

Iswar, S., Malfait, W. J., Balog, S., Winnefeld, F., Lattuada, M., & Koebel, M. M. (2017). Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials, 241, 293-302. https://doi.org/10.1016/j.micromeso.2016.11.037

Jemat, A., Ghazali, M. J., Razali, M., & Otsuka, Y. (2015). Surface modifications and their effects on titanium dental implants. BioMed research international, 2015. https://doi.org/10.1155/2015/791725

Jiang, Y., Feng, J., & Feng, J. (2017). Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity. Journal of Sol-Gel Science and Technology, 83(1), 64-71. https://doi.org/10.1007/s10971-017-4383-2

Kwok, D. Y., Ng, H., & Neumann, A. W. (2000). Experimental study on contact angle patterns: liquid surface tensions less than solid surface tensions. Journal of colloid and interface science, 225(2), 323-328. https://doi.org/10.1006/jcis.2000.6749

Lai, H. Y., Pangilinan, K., & Advincula, R. (2018). Superoleophilic and under-oil superhydrophobic organogel coatings for oil and water separation. Progress in Organic Coatings, 115, 122-129. https://doi.org/10.1016/j.porgcoat.2017.11.001

Mahadik, D., Lee, Y. K., Chavan, N., Mahadik, S., & Park, H.-H. (2016). Monolithic and shrinkage-free hydrophobic silica aerogels via new rapid supercritical extraction process. The Journal of Supercritical Fluids, 107, 84-91. https://doi.org/10.1016/j.supflu.2015.08.020

Milea, C., Bogatu, C., & Duţă, A. (2011). The influence of parameters in silica sol-gel process. Bulletin of the Transilvania University of Braşov, Series I: Engineering Sciences, 4(53).

Nah, H.-Y., Parale, V. G., Lee, K.-Y., Choi, H., Kim, T., Lim, C.-H., . . . Park, H.-H. (2018). Silylation of sodium silicate-based silica aerogel using trimethylethoxysilane as alternative surface modification agent. Journal of Sol-Gel Science and Technology, 87(2), 319-330. https://doi.org/10.1007/s10971-018-4729-4

Parale, V., Mahadik, D., Kavale, M., Mahadik, S., Rao, A. V., & Mullens, S. (2013). Sol–gel preparation of PTMS modified hydrophobic and transparent silica coatings. Journal of Porous Materials, 20(4), 733-739. https://doi.org/10.1007/s10934-012-9648-0

Plata, D. L., Briones, Y. J., Wolfe, R. L., Carroll, M. K., Bakrania, S. D., Mandel, S. G., & Anderson, A. M. (2004). Aerogel-platform optical sensors for oxygen gas. Journal of Non-crystalline solids, 350, 326-335. https://doi.org/10.1016/j.jnoncrysol.2004.06.046

Rao, A. P., Rao, A. V., & Pajonk, G. (2007). Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Applied Surface Science, 253(14), 6032-6040. https://doi.org/10.1016/j.apsusc.2006.12.117

Rao, A. V., Kulkarni, M. M., & Bhagat, S. D. (2005). Transport of liquids using superhydrophobic aerogels. Journal of colloid and interface science, 285(1), 413-418. https://doi.org/10.1016/j.jcis.2004.11.033

Rao, A. V., Nilsen, E., & Einarsrud, M.-A. (2001). Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method. Journal of Non-Crystalline Solids, 296(3), 165-171. https://doi.org/10.1016/S0022-3093(01)00907-3

Rao, A. V., Pajonk, G., Bhagat, S., & Barboux, P. (2004). Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4− n. Journal of Non-Crystalline Solids, 350, 216-223. https://doi.org/10.1016/j.jnoncrysol.2004.06.034

Tavana, H., Jehnichen, D., Grundke, K., Hair, M., & Neumann, A. (2007). Contact angle hysteresis on fluoropolymer surfaces. Advances in colloid and interface science, 134, 236-248. https://doi.org/10.1016/j.cis.2007.04.008

Twej, W. A., & Al-Sharuee, I. F. (2017). Influence of reactant catalyst type and Drying Control Chemical Additives (DCCA) on optical and structural properties of silica aerogel prepared via ambient pressure drying. Iraqi Journal of Science, 58(1A), 63-70.

Voorhees, P. W. (1985). The theory of Ostwald ripening. Journal of Statistical Physics, 38(1-2), 231-252. https://doi.org/10.1007/BF01017860

Wagh, P., & Ingale, S. (2002). Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels. Ceramics International, 28(1), 43-50. https://doi.org/10.1016/S0272-8842(01)00056-6

Wagh, P., Ingale, S., & Gupta, S. C. (2010). Comparison of hydrophobicity studies of silica aerogels using contact angle measurements with water drop method and adsorbed water content measurements made by Karl Fischer’s titration method. Journal of Sol-Gel Science and Technology, 55(1), 73-78. https://doi.org/10.1007/s10971-010-2217-6

Yun, S., Guo, T., Zhang, J., He, L., Li, Y., Li, H., . . . Gao, Y. (2017). Facile synthesis of large-sized monolithic methyltrimethoxysilane-based silica aerogel via ambient pressure drying. Journal of Sol-Gel Science and Technology, 83(1), 53-63. https://doi.org/10.1007/s10971-017-4377-0

Żenkiewicz, M. (2007). Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering, 24(1), 137-145.

Zong, S., Wei, W., Jiang, Z., Yan, Z., Zhu, J., & Xie, J. (2015). Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: Skeleton strength and surface modification. RSC Advances, 5(68), 55579-55587. https://doi.org/10.1039/C5RA08714G

Downloads

Published

2019-04-10

How to Cite

Al-Sharuee, I. F. (2019). EXPERIMENTAL INVESTIGATION AND MODELING OF MODIFICATION AGENT ON SURFACE PROPERTY OF AEROGEL PRODUCED VIA AMBIENT PRESSURE DRYING . MATTER: International Journal of Science and Technology, 5(1), 85–98. https://doi.org/10.20319/mijst.2019.51.8598