• Mohamed Gusm Alla Muhgoub Sulaiman Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia




Laser Irradiation, Drug Delivery Carrier, Acrylic Acid, Graft Copolymer


Aim of this study is to synthesis Gum Arabic-g- Acrylic acid using laser light as initiator to synthesis clean product that is free from any trace's chemicals substances. Firstly the graft of acrylic acid on Gum Arabic, initiated by (C.A.N), will be study under a nitrogen gas to get reaction conditions such as graft copolymerization temperature, reaction time, and Gum Arabic, monomer, and initiator concentrations. Percentage of graft efficiency (% GE) and percentage of graft yield (% GY) will be collocated. Graft copolymer will be recognized using FTIR Spectroscopy, (TGA) analysis, (XRD) diffraction and (SEM) microscope. The graft will be later used in drug delivery carrier to control cancer in brain and matrices for colon aiming medicine delivery systems. This study focused to new trends and latest developments in this area where laser light was found to be efficient and clean method for synthesis GA-g-Acrylic Acid.


Awwad, A. M., & Albiss, B. (2015). Biosynthesis of Colloidal Copper Hydroxide Nanowires Using Pistachio Leaf Extract. Advanced Materials Letters, 6(1), 51- 54. https://doi.org/10.5185/amlett.2015.5630

Athawale V.D., & Rathi S.C., (1999) Graft Polymerization: Starch as a Model Substrate J..Macromol. Sci.-Rev. Macromol. Chem. Phys., C39; 445-480.

Brannon J .H., & Lankari J .R .,(1986), Appl . l'hr•.+ . Lett. . 48, 1226.

Dickinson, E., (2003), Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 17; 25–39.

Eromosele, I.C. (1994), “Graft Coplymerization of acrylo nitrile onto Cotton Cellulose by potassium permanganate-thio acetamide redox system”, J. Appli. Polym. Sci, 51, 1817-1821.

Fernandez M.J., Casinos I., & Guzman G.M., (1990). Effect the way of addition of reactants in the graft copolymerization of a vinyl acetate methyl acrylate mixture onto cellulose, J. Polym. Sci.,Part A: Polym. Chem., 28; 2275-2292.

Hoyle C .E., Chang C .H. & Trapp M .A .,(1989), Macromolecules, 22 ; 3607-3610.

Kesling W. Koine! D., & Schollmcyer F. S., (1990), Angew. Mukroat& Chem., 177-182.

Mohamed G. M. S., Mohamed S. Adam, Essam A., & Hayat Elb. (2015). Green Laser-Induced Graft Copolymerization of 3, 3-Dimethyle Acrylic Acid onto Gum Karaya. Comparison on the Reactivity with Cerium (IV) Ammonium Nitrate, International Journal of Recent Scientific Research. , 6; 2428-2433.

Mahdavinia G.R., Zohuriaan-Mehr M.J., & Pourjavadi A., (2004), Modified chitosan. III.Superabsorbency, salt- and pHsensitivity of smart ampholytic hydrogels from chitosan-g-polyacrylonitrile, Polym. Adv. Technol., 15; 173-180.

Mirzadeh 1.1., Khorasani M.'1., Katbab A.A., Ilurford R .Y., & Sohcili Z .,(1994). Biocompatibility evaluation of laser-induced AAm and HEMA grafted EPR. , Clinical Materials, 16, 177-187.

Mirzadeh H, Katbab A.A, Khorasani M.T, &Burford R.P., (1994) Laser induced surface grafting of HEMA and NVP onto ethylene-propylene rubber as biocompatible material. Angew Makromol Chem 18, 2340.

Mirzadeh H., Kathah A .A., & Burford R .P.,(1993). CO2-Pulsed Laser induced surface grafting of acrylamide onto ethylene-propylene- rubber (EPR)—1, Rad. Phys. Chem., 41, 507-519.

Nevin Çankaya (2016). Synthesis of graft copolymers onto starch and its semiconducting properties. Results in Physics, 6; 538–542.

Nafie AlM., Elfatih A. H., Al Sayed, & Mohamed G. M. S., (2012). Diode Laser (532 nm) induced grafting of polyacrylamide onto Gum Arabic, Journal of Physical Science 23, 2; 43–53.

Nafie AlM., Elfatih A. H., Al Sayed, & Mohamed G. M. S., (2011). Graft copolymerization of acrylamide onto gum karaya using diode laser (532nm), Chemical Physics: Elixir Chem. Phys., 33; 2227-2230.

Nafie AlM., Elfatih A. H., Al Sayed, & Mohamed G. M. S., (2010). Green laser (532nm) induced Graft copolymerization of 3, 3-dimethyle acrylic acid onto Gum Arabic, International Research Publications: Materials, Methods & Technologies, 5; 1-14.

Sengodan, K., & Rajendran, S. P.., (2017). Synthesis and Characterization of Zinc Oxide and Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract as Reducing Agent. Journal of Nanoscience, 2017, 1-7. https://doi.org/10.1155/2017/8348507

Singha, A. S., Guleria, A., & Rana, R. K. (2013). Ascorbic acid/H2O2-initiated graft copolymerization of Methyl Methacrylate onto abelmoschus esculentus fiber: a kinetic approach. Int. J. Polym. Anal. Char. 18; 1–8.

Stephen, A.M., Churms, S.C., &Vogt, D.C., (1990), Methods Plant Biochemistry, 2; 483.

Zhau X., Continetti R. E., Ynkuyama A. , Ilintsa E .J. & l .ec Y.T., J. (1989), Chem. Phys., 91; 4118.

Zhao X., Hinsta FJ., & Lee Y .T., (1988), J. Chem. Phys.., 88, 8I1.




How to Cite

Sulaiman, M. G. A. M. (2019). DIODE LASER-INDUCED GUM ARABIC-G-ACRYLIC ACID . MATTER: International Journal of Science and Technology, 5(3), 86–97. https://doi.org/10.20319/mijst.2019.53.8697