USING THE WRF/CHEM MODEL TO EVALUATE URBAN EMISSION REDUCTION STRATEGIES: MADRID CASE STUDY

Authors

  • Roberto San José Software and Modelling Group, Computer Science School, Technical University of Madrid (UPM), Madrid, Spain
  • Juan L Pérez Software and Modelling Group, Computer Science School, Technical University of Madrid (UPM), Madrid, Spain
  • Libia Pérez Software and Modelling Group, Computer Science School, Technical University of Madrid (UPM), Madrid, Spain
  • Rosa Maria Gonzalez Barras Department of Physics and Meteorology, Faculty of Physics, Complutense University of Madrid (UCM), Ciudad Universitaria, 28040 Madrid, Spain

DOI:

https://doi.org/10.20319/lijhls.2018.41.101121

Keywords:

WRF/Chem, Urban Emission, Madrid Air Quality

Abstract

In the cities, traffic emissions are the largest contributor to the exceedances of NO2 limit values. It is necessary to develop tools to evaluate if the traffic measures can reduce the air pollution. EMIMO-WRF/Chem air quality modeling system (1 km) has been used to assess the effectiveness of emergency measures based on traffic restrictions to reduce concentrations of air pollutants during the NO2 pollution episode in the city of Madrid. Two simulations were designed: “REAL" including traffic restrictions and "BAU" representing what would happen if no action were taken. The difference between the two simulations (BAU-REAL) gives us the contribution of traffic restriction measures to reduce concentrations of pollutants in the air. An evaluation of the modelling system's performance has previously been carried out and found to be very satisfactory, demonstrating that the proposed system can be used to simulate pollution episodes in cities. The results indicate that the daily concentration of NO2 decreased by only about 1.3 % and so the measures taken were not sufficiently effective compared to the traffic reduction effort that reached around 10 %. More effective measures must be explore and analyze with the proposed tool. 

References

Arasa, R., Lozano-García, A., & Codina, B. (2014). Evaluating Mitigation Plans over Traffic Sector to Improve NO2 Levels in Andalusia (Spain) Using a Regional-Local Scale Photochemical Modelling System. Open Journal Of Air Pollution, 03(03), 70-86. https://doi.org/10.4236/ojap.2014.33008

Carslaw, D., Murrells, T., Andersson, J., & Keenan, M. (2016). Have vehicle emissions of primary NO2 peaked?. Faraday Discussions, 189, 439-454. https://doi.org/10.1039/C5FD00162E

Cohen, J., Cook, R., Bailey, C., & Carr, E. (2005). Relationship between motor vehicle emissions of hazardous pollutants, roadway proximity, and ambient concentrations in Portland, Oregon. Environmental Modelling & Software, 20(1), 7-12. https://doi.org/10.1016/j.envsoft.2004.04.002

Duclaux, O., Frejafon, E., Schmidt, H., Thomasson, A., Mondelain, D., & Yu, J. et al. (2002). 3D-air quality model evaluation using the Lidar technique. Atmospheric Environment, 36(32), 5081-5095. https://doi.org/10.1016/S1352-2310(02)00418-1

European Environment Agency (2003). Europe's environment: the third assessment. Luxembourg.

Forkel, R., Werhahn, J., Hansen, A., McKeen, S., Peckham, S., Grell, G., & Suppan, P. (2012). Effect of aerosol-radiation feedback on regional air quality – A case study with WRF/Chem. Atmospheric Environment, 53, 202-211. https://doi.org/10.1016/j.atmosenv.2011.10.009

Grell, G., & Dévényi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14), 38-1-38-4. https://doi.org/10.1029/2002GL015311

Guenther, A., Zimmerman, P., & Wildermuth, M. (1994). Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmospheric Environment, 28(6), 1197-1210. https://doi.org/10.1016/1352-2310(94)90297-6

Guenther, A., Zimmerman, P., Harley, P., Monson, R., & Fall, R. (1993). Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. Journal Of Geophysical Research, 98(D7), 12609. https://doi.org/10.1029/93JD00527

Heiko Klein, A. (2018). EMEP/MSC-W SR data. Retrieved from http://www.emep.int/mscw/mscw_srdata.html

Jensen, S., Berkowicz, R., Sten Hansen, H., & Hertel, O. (2001). A Danish decision-support GIS tool for management of urban air quality and human exposures. Transportation Research Part D: Transport And Environment, 6(4), 229-241. https://doi.org/10.1016/S1361-9209(00)00026-2

Krajzewicz, D., J. Erdmann, M. Behrisch, and L. Bieker (2012) Recent Development and Applications of SUMO - Simulation of Urban MObility. International Journal On Advances in Systems and Measurements, 5 (3&4), pp. 128-138. ISSN 1942-261x.

Kuenen, J., Visschedijk, A., Jozwicka, M., & Denier van der Gon, H. (2014). TNO-MACC_II emission inventory: a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmospheric Chemistry And Physics Discussions, 14(5), 5837-5869. https://doi.org/10.5194/acpd-14-5837-2014

Liu, T., Gong, S., He, J., Yu, M., Wang, Q., & Li, H. et al. (2017). Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area. Atmospheric Chemistry And Physics, 17(4), 2971-2980. https://doi.org/10.5194/acp-17-2971-2017

Ntziachristos, L., Papadimitriou, G., Ligterink, N., & Hausberger, S. (2016). Implications of diesel emissions control failures to emission factors and road transport NO x evolution. Atmospheric Environment, 141, 542-551. https://doi.org/10.1016/j.atmosenv.2016.07.036

Pope, C., & Dockery, D. (2006). Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal Of The Air & Waste Management Association, 56(6), 709-742. https://doi.org/10.1080/10473289.2006.10464485

Pouliot, G., Pierce, T., Denier van der Gon, H., Schaap, M., Moran, M., & Nopmongcol, U. (2012). Comparing emission inventories and model-ready emission datasets between Europe and North America for the AQMEII project. Atmospheric Environment, 53, 4-14. https://doi.org/10.1016/j.atmosenv.2011.12.041

Rabl, A., & de Nazelle, A. (2012). Benefits of shift from car to active transport. Transport Policy, 19(1), 121-131. https://doi.org/10.1016/j.tranpol.2011.09.008

San José, R., Pérez, J., Balzarini, A., Baró, R., Curci, G., & Forkel, R. et al. (2015). Sensitivity of feedback effects in CBMZ/MOSAIC chemical mechanism. Atmospheric Environment, 115, 646-656. https://doi.org/10.1016/j.atmosenv.2015.04.030

San José, R., Pérez, J., Morant, J., & González, R. (2008). European operational air quality forecasting system by using MM5–CMAQ–EMIMO tool. Simulation Modelling Practice And Theory, 16(10), 1534-1540. https://doi.org/10.1016/j.simpat.2007.11.021

Seinfeld, J., Pandis, S., & Noone, K. (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Physics Today, 51(10), 88-90. https://doi.org/10.1063/1.882420

Tuccella, P., Curci, G., Visconti, G., Bessagnet, B., Menut, L., & Park, R. (2012). Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. Journal Of Geophysical Research: Atmospheres, 117(D3), n/a-n/a. https://doi.org/10.1029/2011JD016302

Žabkar, R., Koračin, D., & Rakovec, J. (2013). A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the Northern Adriatic area. Atmospheric Environment, 77, 990-1004. https://doi.org/10.1016/j.atmosenv.2013.05.065

Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., & Baklanov, A. (2012). Real-time air quality forecasting, part I: History, techniques, and current status. Atmospheric Environment, 60, 632-655. https://doi.org/10.1016/j.atmosenv.2012.06.031

Downloads

Published

2018-05-23

How to Cite

José, R. S., Pérez, J. L., Pérez, L., & Barras, R. M. (2018). USING THE WRF/CHEM MODEL TO EVALUATE URBAN EMISSION REDUCTION STRATEGIES: MADRID CASE STUDY. LIFE: International Journal of Health and Life-Sciences, 4(1), 101–121. https://doi.org/10.20319/lijhls.2018.41.101121