SHORT TERM HEALTH IMPACT ASSESSMENT OF GLOBAL CLIMATE SCENARIOS ON URBAN SCALE
DOI:
https://doi.org/10.20319/lijhls.2018.41.82100Keywords:
Health Impact, Climate Change, Air Pollution, Dynamical DownscalingAbstract
Climate change is projected to have effects on public health because citizens will be exposure to different levels of air pollution and temperature. There are few studies on health impacts of climate change with very high spatial resolution mainly due to issues in downscaling modelling and computational resources. This research tries to help understand the possible impacts of the global climate over the citizen´s health with 50 meters of spatial resolution covering the gap between global/regional scale and urban scale. A computational dynamical downscaling modelling system has been implemented to assess the short term health effects of two global climate projections, IPCC 4.5 (stopping emissions increments) and 8.5 (no actions to stop emissions increments) over Milan and London area.. Modelled air quality concentrations at microscopic scale were compared with measurements of air quality stations, taking 2011 as the reference year; evaluation of modeling results determined that the system was suitable for the study objective. The results show that in the case of Milan the worst year for the effects of climate change on the health of citizens is 2050 for both scenarios but in 8.5 the highest increases are expected, especially in the area south east of the city that can reach 6.9%. The effect of temperature on health becomes 4 times more potent than exposure to concentrations of contaminants. In the case of London, the effects on the health of citizens of global climate change are marked by temperature increases, while decreases in mortality are expected from exposure to concentrations. Results of the modelling tool plus other impact assessment studies can be taken into account by the stakeholders to develop strategies to reduce the health impacts of the global climate on the cities.
References
Anderson, H., Atkinson, R., Peacock, L., Marston, L., Konstantinou, K., & Europe, W. (2004). Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3): report of a WHO task group. Apps.who.int. Retrieved 25 April 2018, from http://apps.who.int/iris/handle/10665/107557?locale=zh
Atkinson, R. W.; Anderson, H. R.; Medina, S.; Iñiguez, C.; Forsberg, B.; Segerstedt, B.; Artazcoz, L.; Paldy, A.; Zorrilla, B.; Lefranc, A. & Michelozzi, P. (2005). Analysis of all age respiratory hospital admissions and particulate air pollution within the Apheis programme. In APHEIS Air Pollution and Information System. Health Impact Assessment of Air Pollution and Communication Strategy. Third-year Report, pp. 127 133. Institut de Veille Sanitaire.
Baccini, M., Kosatsky, T., Analitis, A., Anderson, H., D'Ovidio, M., & Menne, B. et al. (2009). Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios. Journal Of Epidemiology & Community Health, 65(1), 64-70. https://doi.org/10.1136/jech.2008.085639
Bell, M., Peng, R., & Dominici, F. (2006). The Exposure–Response Curve for Ozone and Risk of Mortality and the Adequacy of Current Ozone Regulations. Environmental Health Perspectives, 114(4), 532-536. https://doi.org/10.1289/ehp.8816
BENMAP; U.S. EPA (U.S. Environmental Protection Agency (2010). BenMap: Environmental Benefits Mapping and Analysis Program User’s Manual, Appendix, “ Research Triangle Park, NC:U.S. EPA, Office of Air Quality Planning and Standards-
Benmarhnia, T., Sottile, M., Plante, C., Brand, A., Casati, B., Fournier, M., & Smargiassi, A. (2014). Variability in Temperature-Related Mortality Projections under Climate Change. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1306954
Berti G. per Gruppo Collaborativo EpiAir, (2013): Alcuni risultati del Progetto EpiAir, XXXVII Congresso Associazione Italiana Epidemiologia, Roma, 4-6 novembre 2013
Bremner, S., Anderson, H., Atkinson, R., McMichael, A., Strachan, D., Bland, J., & Bower, J. (1999). Short-term associations between outdoor air pollution and mortality in London 1992-4. Occupational And Environmental Medicine, 56(4), 237-244. https://doi.org/10.1136/oem.56.4.237
Burnett, R., Brook, J., Yung, W., Dales, R., & Krewski, D. (1997). Association between Ozone and Hospitalization for Respiratory Diseases in 16 Canadian Cities. Environmental Research, 72(1), 24-31. https://doi.org/10.1006/enrs.1996.3685
Confalonieri, U.; Akhtar, R.; Ebi, K.L.; Hauengue, M.; Kovats, R.S.; Revich, B.; Woodward, A.; Abeku, T.; Alam, M.; Beggs, P.; et al. 2007. Human Health. In Climate Change (2007): Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel On Climate Change; Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E.; Eds.; Cambridge University Press: Cambridge, UK; pp. 391–431.
D'Ippoliti, D., Michelozzi, P., Marino, C., de'Donato, F., Menne, B., & Katsouyanni, K. et al. (2010). The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environmental Health, 9(1). https://doi.org/10.1186/1476-069X-9-37
Grell, G., Peckham, S., Schmitz, R., McKeen, S., Frost, G., Skamarock, W., & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957-6975. https://doi.org/10.1016/j.atmosenv.2005.04.027
Gryparis, A., Forsberg, B., Katsouyanni, K., Analitis, A., Touloumi, G., & Schwartz, J. et al. (2004). Acute Effects of Ozone on Mortality from the “Air Pollution and Health. American Journal of Respiratory And Critical Care Medicine, 170(10), 1080-1087. https://doi.org/10.1164/rccm.200403-333OC
IPCC. Climate Change, (2013): The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013
Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le Tertre, A., & Monopolis, Y. et al. (2001). Confounding and Effect Modification in the Short-Term Effects of Ambient Particles on Total Mortality: Results from 29 European Cities within the APHEA2 Project. Epidemiology, 12(5), 521-531.http://dx.doi.org/10.1097/00001648-200109000-00011
Kinney, P., O’Neill, M., Bell, M., & Schwartz, J. (2008). Approaches for estimating effects of climate change on heat-related deaths: challenges and opportunities. Environmental Science & Policy, 11(1), 87-96. https://doi.org/10.1016/j.envsci.2007.08.001
Masson, V. (2000). A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models. Boundary-Layer Meteorology, 94(3), 357-397. https://doi.org/10.1023/A:1002463829265
Medina-Ramon, M., & Schwartz, J. (2007). Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 US cities. Occupational And Environmental Medicine, 64(12), 827-833. https://doi.org/10.1136/oem.2007.033175
Michelozzi, P., Accetta, G., De Sario, M., D'Ippoliti, D., Marino, C., & Baccini, M. et al. (2009). High Temperature and Hospitalizations for Cardiovascular and Respiratory Causes in 12 European Cities. American Journal Of Respiratory And Critical Care Medicine, 179(5), 383-389. https://doi.org/10.1164/rccm.200802-217OC
Mickley, L. (2004). Effects of future climate change on regional air pollution episodes in the United States. Geophysical Research Letters, 31(24). https://doi.org/10.1029/2004GL021216
Oleson, K., Monaghan, A., Wilhelmi, O., Barlage, M., Brunsell, N., & Feddema, J. et al. (2013). Interactions between urbanization, heat stress, and climate change. Climatic Change, 129(3-4), 525-541. https://doi.org/10.1007/s10584-013-0936-8
Ostry, A., Ogborn, M., Bassil, K. L., Takaro, T. K., & Allen, D. M. (2010). Climate change and health in British Columbia: Projected impacts and a proposed agenda for adaptation research and policy. International Journal of Environmental Research and Public Health, 7(3), 1018-1035. DOI: https://doi.org/10.3390/ijerph7031018
Piringer, M., Petz, E., Groehn, I., & Schauberger, G. (2007). A sensitivity study of separation distances calculated with the Austrian Odour Dispersion Model (AODM). Atmospheric Environment, 41(8), 1725-1735. https://doi.org/10.1016/j.atmosenv.2006.10.028
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., & Fischer, G. et al. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1-2), 33-57. https://doi.org/10.1007/s10584-011-0149-y
Rosenzweig, C., Solecki, W., Hammer, S. A., & Mehrotra, S. (2010). Cities lead the way in climate–change action. Nature, 467(7318), 909-911. doi: https://doi.org/10.1038/467909a
San José, R., Pérez, J., Morant, J., & González, R. (2008). European operational air quality forecasting system by using MM5–CMAQ–EMIMO tool. Simulation Modelling Practice And Theory, 16(10), 1534-1540. https://doi.org/10.1016/j.simpat.2007.11.021
Scarinzi C, Alessandrini ER, Chiusolo M, et al (2013). Inquinamento atmosferico e ricoveri ospedalieri urgenti in 25 città italiane: risultati del Progetto EpiAir2, Epidemiol Prev 2013; 37(4-5):230-241
Thomson, A., Calvin, K., Smith, S., Kyle, G., Volke, A., & Patel, P. et al. (2011). RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1-2), 77-94. https://doi.org/10.1007/s10584-011-0151-4
Valari, M., & Menut, L. (2008). Does an Increase in Air Quality Models’ Resolution Bring Surface Ozone Concentrations Closer to Reality?. Journal Of Atmospheric And Oceanic Technology, 25(11), 1955-1968. https://doi.org/10.1175/2008JTECHA1123.1
Van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., & Hibbard, K. et al. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1-2), 5-31. https://doi.org/10.1007/s10584-011-0148-z
Vesteri, U., & Nontasak, T. (2018). Some Possible Impacts of Climate Change On Human Security In Thailand. PEOPLE: International Journal of Social Sciences, 3(3), 1730-1751. http://dx.doi.org/10.20319/pijss.2018.33.173017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.