PHYSIOLOGY AND YIELD OF THREE SOYBEAN (GLYCINE MAX (L.) MERRILL) CULTIVARS DIFFERENT IN MATURITY TIMING AS AFFECTED BY WATER DEFICIENCY

Authors

  • Oqba Basal University of Debrecen, Institute of Crop Sciences, Department of Crop Production and Applied Ecology, Debrecen, Hungary
  • András Szabó University of Debrecen, Institute of Crop Sciences, Department of Crop Production and Applied Ecology, Debrecen, Hungary

DOI:

https://doi.org/10.20319/lijhls.2018.43.4659

Keywords:

Soybean, Water deficiency, Physiology, Yield

Abstract

Water deficiency is globally increasing as a direct result of climatic changes, threatening food production stability, especially of drought-susceptible crops, to which soybean (Glycine max (L.) Merrill) belongs. Soybean is mainly important because of its high protein and oil content.A field experiment was conducted in Debrecen, Hungary in 2017. Three soybean cultivars, different in maturity timing (very early-, early-, and middle-timing cultivars), were grown under two irrigation regimes; non-irrigated (NI) and fully-irrigated (FI) regime, in order to study the effect of water deficiency on the physiology and the yield of the above-mentioned cultivars.The yield of the three cultivars was increased when irrigation was applied, and though the increase was insignificant, yet the physiological traits were noticeably, and significantly in certain traits, different between the two irrigation regimes.It was concluded that water deficiency affects the physiology and the yield of soybean, and that the effect output is cultivar-dependent. More traits at different growth stages are needed to best understand water deficiency influence on soybean.

References

Ashley, D. A., Ethridge, W. J., (1978). Irrigation effects on vegetative and reproductive development of three soybeans cultivars. Agron. J. 70, 467-471. https://doi.org/10.2134/agronj1978.00021962007000030026x

Atti, S., Bonnell, R., Smith, D., Prasher, S., (2004). Response of an Indeterminate Soybean {Glycine max (L.) Merr} to Chronic Water Deficit During Reproductive Development Under Greenhouse Conditions. Canadian Water Resources Journal / Revue canadienne des ressources hydriques. 29(4), 209-222.

Bajaj, S., Chen, P., Longer, D. E., Shi, A., Hou, A., Ishibashi, T., Brye, K. R. (2008). Irrigation and planting date effects on seed yield and agronomic traits of early-maturing Soybean. J. Crop Improv. 22 (1), 47-65. https://doi.org/10.1080/15427520802042937

Bellaloui, N., Mengistu, A. (2008). Seed composition is influenced by irrigation regimes and cultivar differences in soybean. Irrig Sci. 26, 261-268. https://doi.org/10.1007/s00271-007-0091-y

Board, J. E., (1987). Yield components related to seed yield in determinate soybean. Crop Sci., 27, 1296-1297. https://doi.org/10.2135/cropsci1987.0011183X002700060041x

Bord, J. E., Harville, B. G. (1998). Late -planted soybean yield response to reproductive source/sink stress. Crop Science 38, 763-771. https://doi.org/10.2135/cropsci1998.0011183X003800030024x

Brady, R. A., Stone, L. R., Nickell, C. D., Powers, W. L. (1974). Water conservation through proper timing of soybean irrigation. J. Soil Water Conserv. 29, 266-268.

Brown, E., Brown, D., Caviness, C. (1985). Response of selected soybean cultivars to soil moisture deficit. Agronomy Journal 77(2), 274-278. https://doi.org/10.2134/agronj1985.00021962007700020022x

Cerezini P, Kuwano B, Santos M, Terassi F, Hungria M, Nogueira M. A. (2016). Strategies to promote early nodulation in soybean under drought. Field Crops Research 196, 160-167. https://doi.org/10.1016/j.fcr.2016.06.017

Chang, Y. Z., (1981). LAI of high-yielding cultivation in soybean. Sci. Agric. Sin. 2, 22-26 (in Chinese).

Cui, W., Chang, Z., Li, N. (2013). Effect of drought stress on physiology ecology and yield of soybean. Journal of Water Resources and Water Engineering, 24, 20-24. (in Chinese).

Cui, Y. Y., Pandey, D. M., Hahn, E. J., Paek, K. Y. (2004). Effect of drought on physiological aspects of Crassulacean acid metabolism in Doritaenopsis. Plant Sci. 167, 1219-1226. https://doi.org/10.1016/j.plantsci.2004.06.011

Cushman, J. C., Bohnert, H. J. G. (2000). Gnomic approaches to plant stress tolerance, Plant Biol. 3, 117-124.

Demirtas, Ç. D., Yazgan, S., Candogan, B. C., Sincik, M., Büyükcangaz, H., Göksoy, A. T. (2010). Quality and yield response of soybean (Glycine max (L.) Merrill) to drought stress in sub–humid environment. African Journal of Biotechnology 9(41), 6873-6881.

Dogan, E., Kirnak, H., Copur, O. (2007). Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Res. 103 (2), 154-159. https://doi.org/10.1016/j.fcr.2007.05.009

Dong J., Xiao X., Wagle P., Zhang G., Zhou Y., Jin C., Torn M. S., Meyers T. P., Suyker A. E., Wang J., Yan H., Biradar Ch., Moore III B. (2015). Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sensing of Environment 162, 154-168. https://doi.org/10.1016/j.rse.2015.02.022

Dong, Z., Bin, Y. Q., Sun, L. Q., (1979). Comparison of cultivar productivity in soybean. J. Shenyang Agric. Coll. 1, 37-47 (in Chinese).

Doss, B. D., Pearson R. W., Rogers H. T. (1974). Effect of soil water stress at various growth stages on soybean yield. Agron. J. 66, 297-299. https://doi.org/10.2134/agronj1974.00021962006600020032x

Fan X-D., Wang J-Q., Yang N., Dong Y-Y., Liu L., Wang F-W., Wang N., Chen H., Liu W-C., Sun Y-P., Wu J-Y., Li H-Y. (2013). Gene expression profiling of soybean leaves and roots under salt, saline–alkali and drought stress by high-throughput Illumina sequencing. Gene, 512, 392-402. https://doi.org/10.1016/j.gene.2012.09.100

Fehr, W. R., Caviness, C. E. (1977). Stages of soybean development. Special Report. 87. http://lib.dr.iastate.edu/specialreports/87

Frederick, J. R., Woolley, J. T., Hesketh, J. D., Peters, D. B. (1989). Phenological Responses of Old and Modern Soybean Cultivars to Air Temperature and Soil Moisture Treatment. Field Crops Research, 21, 9-18. https://doi.org/10.1016/0378-4290(89)90036-1

Garcia, A. G., Persson, T., Guerra, L. C., Hoogenboom, G. (2010). Response of soybean genotypes to different irrigation regimes in a humid region of the southeastern USA. Agricultural Water Management, 97, 981-987. https://doi.org/10.1016/j.agwat.2010.01.030

Georgiev, G. (2004). Influence of moisture conditions on the yield of soybean verities. Plant Sci. 5, 406-410.

Gercek, S., Boydak, E., Okant, M., Dikilitas, M. (2009). Water pillow irrigation compared to furrow irrigation for soybean production in a semi-arid area. Agric. Water Manage. 96 (1), 87-92. https://doi.org/10.1016/j.agwat.2008.06.006

Hao, L., Wang, Y., Zhang, J., Xie, Y., Zhang, M., Duan, L., Li, Z. (2013). Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean. Plant Science 210, 1-9. https://doi.org/10.1016/j.plantsci.2013.05.006

He, J., Du, Y-L., Wang, T., Turner, N. C., Yang, R-P., Jin, Y., Xi, Y., Zhang, C., Cui, T., Fang, X-W., Li, F-M. (2016). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agric. Water Manage. 179, 236-245. http://dx.doi.org/10.1016/j.agwat.2016.07.008

Heatherly, L. G., Elmore, C. D. (1986). Irrigation and planting date effects on soybean grown on clay soil. Agron. J. 78, 576-580. https://doi.org/10.2134/agronj1986.00021962007800040004x

Hossain, Md. M., Liu, X., Qi, X., Lam, H-M., Zhang, J. (2014). Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. The Crop Journal, 2, 366-380. https://doi.org/10.1016/j.cj.2014.08.001

Ishibashi, Y., Yamaguchi, H., Yuasa, T., Iwaya-Inoue, M., Arima, S., Zheng, S. (2011). Hydrogen peroxide spraying alleviates drought stress in soybean plants. Journal of Plant Physiology, 168, 1562-1567. https://doi.org/10.1016/j.jplph.2011.02.003

Jin, J., Liu, X. B., Wang, G. H., Herbert, S. J. (2004a). Physiological comparisons between soybean genotypes differing in maturity and yield. Acta Agronomica Sin. 30, 1225-1231 (in Chinese).

Jin, J., Liu, X. B., Wang, G. H., Herbert, S. J. (2004b). Some ecophysiological characteristics at R4–R5 stage in relation to soybean yield differing in maturities. Agric. Sci. China 3, 425-434 (in English).

Jin, J., Liu, X. B., Wang, G. H., Li, Y. H. (2004c). The relationship between canopy structure and radiation characteristics during reproductive stages in soybean. J. Northeast Agric. Univ. 35, 412-418 (in Chinese).

Jin, J., Liu, X. B., Wang, G. H., Li, Y. H., Pan, X. W., Herbert, S. J. (2004d). Root morphology during the reproductive stages in relation to soybean yield. Soybean Sci. 23, 253-257 (in Chinese).

Kadhem, F. A., Specht, J. E. Williams, J. H. (1985). Soybean irrigation serially timed during stages R1 to R6. I. Agronomic responses. Agron. J. 77, 291-298. https://doi.org/10.2134/agronj1985.00021962007700020027x https://doi.org/10.2134/agronj1985.00021962007700020026x

Karam, F., Masaad, R., Sfeir, T., Mounzer, O., Rouphael, Y. (2005). Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agric. Water Manage. 75, 226-244. https://doi.org/10.1016/j.agwat.2004.12.015

Kokubun, M. (2011). Physiological Mechanisms Regulating Flower Abortion in Soybean, Soybean - Biochemistry, Chemistry and Physiology, Prof. Tzi-Bun Ng (Ed.), ISBN: 978-953-307-219-7, InTech, Available from: http://www.intechopen.com/books/soybean-biochemistry-chemistry-and-physiology/physiologicalmechanisms-regulating-flower-abortion-in-soybean https://doi.org/10.5772/15694

Korte, L. L., Specht, J. E., Williams, J. H. Sorensen, R. C. (1983). Irrigation of soybean genotypes during reproductive ontogeny. II. Yield component responses. Crop Sci., 23, 528-533. https://doi.org/10.2135/cropsci1983.0011183X002300030019x https://doi.org/10.2135/cropsci1983.0011183X002300030020x

Li, D., Liu, H., Qiao, Y., Wang, Y., Cai, Z., Dong, B., Shi, Ch., Liu, Y., Li, X., Liu, M. (2013). Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress. Agricultural Water Management 129, 105-112. https://doi.org/10.1016/j.agwat.2013.07.014

Liu, F., Andersen, M. N., Jacobsen, S-E., Jensen, Ch. R. (2005). Stomatal control and water use efficiency of soybean (Glycine max (L.) Merr.) during progressive soil drying. Environmental and Experimental Botany 54, 33-40. https://doi.org/10.1016/j.envexpbot.2004.05.002

Liu, F., Jensen, Ch. R., Andersen, M. N. (2004). Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Research 86, 1-13. https://doi.org/10.1016/S0378-4290(03)00165-5

Liu, X., Jin, J., Wang, G., Herbert, S. J. (2008). Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Research 105, 157-171. https://doi.org/10.1016/j.fcr.2007.09.003

Mak, M., Babla, M., Xu, S. C., O’Carrigan, A., Liu, X. H., Gong, Y. M., Holford, P., Chen, Z. H. (2014). Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environmental and Experimental Botany 98, 1-12. https://doi.org/10.1016/j.envexpbot.2013.10.003

Makbul, S., Saruhan Guler, N., Durmus, N., Guven, S. (2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turk. J. Bot. 35, 369-377.

Maleki, A., Naderi, A., Naseri, R., Fathi, A., Bahamin, S. Maleki, R. (2013). Physiological Performance of Soybean Cultivars under Drought Stress. Bull. Env. Pharmacol. Life Sci. 2(6), 38-44.

Manavalan, L. P., Guttikonda, S. K., Tran, L. S. P., Nguyen, H. T., (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 50, 1260-1276. https://doi.org/10.1093/pcp/pcp082

Mattana, M., Biazzi, E., Consonni, R., Locatelli, F., Vannini, C., Provera, S., Coraggio, I. (2005). Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana, Physiol. Plant. 125, 212-223. https://doi.org/10.1111/j.1399-3054.2005.00551.x

Monteith, J. L. Scott, R. K. (1982). Weather and yield variation of crops. In: K. Blaxter and L. Fowden (Editors), Food, Nutrition and Climate. Applied Science Publishers, Barking, Great Britain, pp. 127-149.

Muchow, R. C., (1985). Canopy development in grain legumes grown under different soil water regimes in a semi-arid tropical environment. Field Crops Res. 11, 99-109. https://doi.org/10.1016/0378-4290(85)90094-2

Mutava, R. N., Prince, S. J. K., Syed, N. H., Song, L., Valliyodan, B., Chen, W., Nguyen, H., T. (2015). Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry 86, 109-120. https://doi.org/10.1016/j.plaphy.2014.11.010

Pagter, M., Bragato, C., Brix, H. (2005). Tolerance and physiological responses of Phragmites australis to water deficit. Aquat. Bot. 81, 285-299. https://doi.org/10.1016/j.aquabot.2005.01.002

Pang, S. Q. (1964). Suitable soil moisture in different growth stages of soybean. Bull. Plant Physiol. 6, 23-25 (in Chinese).

Purcell, L. C., King, C. A. (1996). Drought and Nitrogen Source Effects on Nitrogen Nutrition, Seed Growth and Yield in Soybean. J. Plant Nutr. 19, 969-993. https://doi.org/10.1080/01904169609365173

Rahdari, P., Hoseini, S. M., (2012). Drought stress, a review. Int. J. Agron. Plant Prod. 3, 443-446.

Rose, I. (1988). Effects of moisture stress on the oil and protein components of soybean seeds. Crop Pasture Sci. 39, 163-170. https://doi.org/10.1071/AR9880163

Sadeghipour, O., Abbasi, S. (2012). Soybean Response to Drought and Seed Inoculation. World Applied Sciences Journal 17(1), 55-60.

Sincik, M., Candogan, B., Demirtas, C., Büyükcangaz, H., Yazgan, S., Göksoy, A., (2008). Deficit irrigation of soya bean [Glycine max (L.) Merr.] in a sub-humid climate. Journal of Agronomy and Crop Science 194, 200-205. https://doi.org/10.1111/j.1439-037X.2008.00307.x

Sinclair, T. R., Purcell, L. C., King, C. A., Sneller, C. H., Chen, P., Vadez, V., (2007). Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Research 101, 68-71. https://doi.org/10.1016/j.fcr.2006.09.010

Sinclair, T., Serraj, R. (1995). Legume Nitrogen-Fixation and Drought. Nature 378, 344. https://doi.org/10.1038/378344a0

Sinclair, T. R., Spaeth, S. C., Vendeland, J. S. (1981). Microclimate limitations to crop yield. In: M.H. Miller, D.M. Brown, E.G. Beauchamp (Eds.), Breaking the Soil/Climate Barriers to Crop Yield, University of Guelph, Ontario, Canada (1981), pp. 3-27.

Sionit, N., Kramer, P. J. (1977). Effect of water stress during different stages of growth of soybeans, Agronomy Journal 69, 274-278. https://doi.org/10.2134/agronj1977.00021962006900020018x

Sto, C. (2011). Population the deMography of food. Hungry for justice, 73.

Turner, N. C., Davies, S. L., Plummer, J. A., Siddique, K. H. M. (2005). Seed Filling in Grain Legumes Under Water Deficits, with Emphasis on Chickpeas. Advances in Agronomy 87, 211-250. https://doi.org/10.1016/S0065-2113(05)87005-1

Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., SkZ, A. (2008). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria Microbiol. Res. 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003

Downloads

Published

2018-11-15

How to Cite

Basal, O., & Szabó, A. (2018). PHYSIOLOGY AND YIELD OF THREE SOYBEAN (GLYCINE MAX (L.) MERRILL) CULTIVARS DIFFERENT IN MATURITY TIMING AS AFFECTED BY WATER DEFICIENCY. LIFE: International Journal of Health and Life-Sciences, 4(3), 46–59. https://doi.org/10.20319/lijhls.2018.43.4659