INOCULATION ENHANCES SOYBEAN PHYSIOLOGY AND YIELD UNDER MODERATE DROUGHT

Authors

  • Oqba Basal University of Debrecen, Institute of Crop Sciences, Department of Crop Production and Applied Ecology, Debrecen, Hungary
  • András Szabó University of Debrecen, Institute of Crop Sciences, Department of Crop Production and Applied Ecology, Debrecen, Hungary

DOI:

https://doi.org/10.20319/lijhls.2019.52.0113

Keywords:

Inoculation, Moderate Drought, Physiology, Soybean, Yield

Abstract

With a high seed content of protein and oil, soybean is one of the most widely-grown legumes worldwide. Inoculation process enables soybean to achieve most, and sometimes all, of his nitrogen requirements through N2-fixation process, however, this process, like soybean plant itself, is drought-sensitive. Drought is globally-increasingly imposed as a result of climatic changes, negatively affecting soybean production. An experiment was conducted in Debrecen, Hungary in 2017 and 2018 to evaluate the influence of moderate drought stress on some physiological parameters of both inoculated and non-inoculated soybean plants. Results showed that drought negatively affected soybean's physiology and yield, regardless of inoculation; however, inoculated plants could maintain better values of studied parameters relative to their non-inoculated counterparts. On the other hand, drought occurring during R4 stage had more noticeable effects on soybean plants as compared to drought occurring earlier (at V2 stage) during vegetative period. It was concluded that inoculation could be a beneficial strategy in order for soybean to reveal better physiology and, consequently, better yield under moderate drought conditions, and that the timing of drought stress occurrence is crucial regarding soybean's vigor and final seed yield.

References

Abaidoo, R. C., Keyser, H. H., Singleton, P. W., Dashiell, K. E., Sanginga, N. (2007). Population size, distribution and symbiotic characteristics of indigenous Bradyrhizobium spp. that nodulate TGx soybean genotypes in Africa. Appl. SoilEcol. 35, 57–67. https://doi.org/10.1016/j.apsoil.2006.05.006

Allen, D. K., Ohlrogge, J. B., Shachar-Hill, Y. (2009). The Role of Light in Soybean Seed Filling Metabolism. The Plant Journal 58, 220-234. https://doi.org/10.1111/j.1365-313X.2008.03771.x

Ashley, D. A., Ethridge, W. J. (1978). Irrigation effects on vegetative and reproductive development of three soybeans cultivars. Agron. J. 70, 467-471. https://doi.org/10.2134/agronj1978.00021962007000030026x

Atti, S., Bonnell, R., Smith, D., Prasher, S. (2004). Response of an Indeterminate Soybean { Glycine max (L.) Merr} to Chronic Water Deficit During Reproductive Development Under Greenhouse Conditions. Canadian Water Resources Journal / Revue canadienne des ressources hydriques. 29(4), 209-222. https://doi.org/10.4296/cwrj209

Austin, R. B. (1989). Maximizing crop production in water limited environments. 13-25. In: F. W. G. Baker. Drought resistance in cereals. CAB International, Wallingford, England 2220.

Bajaj, S., Chen, P., Longer, D. E., Shi, A., Hou, A., Ishibashi, T., Brye, K. R. (2008). Irrigation and planting date effects on seed yield and agronomic traits of early-maturing Soybean. J. Crop Improv. 22 (1), 47–65. https://doi.org/10.1080/15427520802042937

Couto, C., Silva, L. R., Valentao, P., Velazquez, E., Peix, A., Andrade, P. B. (2011). Effects induced by the nodulation with Bradyrhizobium japonicum on Glycine max (soybean) metabolism and antioxidant potential. Food Chemistry, 127, 1487–1495. https://doi.org/10.1016/j.foodchem.2011.01.135

Dadson, R. B., Acquaah, G. (1984). Rhizobium japonicum, nitrogen and phosphorus effects on nodulation, symbiotic nitrogen fixation and yield of soybean (Glycine max (L.) Merrill) in the southern savanna of Ghana. Field Crops Research 9, 101-108. https://doi.org/10.1016/0378-4290(84)90016-9

Demirtas, Ç. D., Yazgan, S., Candogan, B. C., Sincik, M., Büyükcangaz, H., Göksoy, A. T. (2010). Quality and yield response of soybean (Glycine max (L.) Merrill) to drought stress in sub–humid environment. African Journal of Biotechnology 9(41), 6873-6881.

Dogan, E., Kirnak, H., Copur, O. (2007). Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Res. 103 (2), 154–159. https://doi.org/10.1016/j.fcr.2007.05.009

Doss, B. D., Pearson R. W., Rogers H. T. (1974). Effect of soil water stress at various growth stages on soybean yield. Agron. J. 66, 297–299. https://doi.org/10.2134/agronj1974.00021962006600020032x

Dybing, C. D., Ghiasi, H., Paech, C. (1986). Biochemical characterization of soybean ovary growth from anthesis to abscission of aborting ovaries. Plant Physiol. 81, 1069–1074. https://doi.org/10.1104/pp.81.4.1069

Egamberdiyeva, D., Qarshieva, D., Davranov, K. (2004). The use of Bradyrhizobium to enhance growth and yield of soybean in calcareous soil in Uzbekistan. Journal of Plant Growth Regulation, 23(1), 54–57. https://doi.org/10.1007/s00344-004-0069-4

Elmore, R. W., Eisenhauer, D. E., Specht, J. A., Williams, J. H. (1988). Soybean yield and yield component response to limited capacity sprinkler irrigation system. J. Prod. Agric. 1, 196–201. https://doi.org/10.2134/jpa1988.0196

El-Shaarawi, A. F. I., Sabh, A. Z., Abou-Taleb, S. M., Ghoniem, A. E. (2011). Effect of inorganic nitrogen and Bradyrhizobium japonicum inoculation on growth and yield of soybean. Australian Journal of Basic and Applied Sciences, 5(10), 436–447.

Fang, X. W., Turner, N. C., Yan, G. J., Li, F. M., Siddique, K. H. M. (2010). Flower numberspod production, pollen viability, and pistil function are reduced and flower andpod abortion increased in chickpea (Cicer arietinum L.) under terminal drought.J. Exp. Bot. 61, 335–345. https://doi.org/10.1093/jxb/erp307

Georgiev, G. (2004). Influence of moisture conditions on the yield of soybean verities. Plant Sci. 5, 406-410.

Gercek, S., Boydak, E., Okant, M., Dikilitas, M. (2009). Water pillow irrigation compared to furrow irrigation for soybean production in a semi-arid area. Agric. Water Manage. 96(1), 87–92. https://doi.org/10.1016/j.agwat.2008.06.006

Hao, L., Wang, Y., Zhang, J., Xie, Y., Zhang, M., Duan, L., Li, Z. (2013). Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean. Plant Science 210, 1–9. https://doi.org/10.1016/j.plantsci.2013.05.006

Harper, J. E., (1974). Soil and symbiotic nitrogen requirements for optimum soybean production, Crop Sci. 14, 255–260. https://doi.org/10.2135/cropsci1974.0011183X001400020026x

Herrmann, L., Chotte, J. L., Thuita, M., Lesueur, D. (2014). Effects of cropping systems, maize residues application and N fertilization on promiscuous soybean yields and diversity of native rhizobia in Central Kenya. Pedobiologia 57, 75–85. https://doi.org/10.1016/j.pedobi.2013.12.004

Hungarian Meteorological Service. (2018). Retrieved from https://www.met.hu/en/idojaras/

Hungria, M., Mendes, I. C. (2015). Nitrogen fixation with soybean: the perfect symbiosis? In: de Bruijn, F. (Ed.), Biological Nitrogen Fixation., v.2, Chapter 99. John Wiley & Sons, New Jersey, pp. 1005–1019. https://doi.org/10.1002/9781119053095.ch99

Jin, J., Wang, G. H., Liu, X. B., Pan, X. W., Herbert, S. J. (2005). Phosphorus regulates root traits and phosphorus uptake to improve soybean adaptability to water deficit at initial flowering and full pod stage in a pot experiment. Soil Sci. Plant Nutr. 51, 953–960. https://doi.org/10.1111/j.1747-0765.2005.tb00133.x

Karam, F., Masaad, R., Sfeir, T., Mounzer, O., Rouphael, Y. (2005). Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agric. Water Manage. 75, 226-244. https://doi.org/10.1016/j.agwat.2004.12.015

Kinugasa, T., Takashi Sato, T., Oikawa, S., Hirose, T. (2012). Demand and supply of N in seed production of soybean (Glycine max) at different N fertilization levels after flowering. J. Plant Res. 125, 275–281. https://doi.org/10.1007/s10265-011-0439-5

Lei, W., Tong, Z., Shengyan, D. (2006). Effect of drought and rewatering on photosynthetic physioecological characteristics of soybean. Acta Ecologica Sinica 26(7), 2073−2078. https://doi.org/10.1016/S1872-2032(06)60033-4

Leport, L., Turner, N. C., Davies, S. L., Siddique, K. H. M. (2006). Variation in podproduction and abortion among chickpea cultivars under terminal drought.Eur. J. Agron. 24, 236–246. https://doi.org/10.1016/j.eja.2005.08.005

Levitt, J. (1980). Responses of plants to environmental stresses. Academic Press. New York and London. 697 pp.

Li, D., Liu, H., Qiao, Y., Wang, Y., Cai, Z., Dong, B., Shi, Ch., Liu, Y., Li, X., Liu, M. (2013). Effects of elevated CO2on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress. Agricultural Water Management 129, 105–112. https://doi.org/10.1016/j.agwat.2013.07.014

Liu, F., Andersen, M. N., Jensen, Ch. R. (2003). Loss of Pod Set Caused by Drought Stress Is Associated with Water Status and ABA Content of Reproductive Structures in Soybean. Functional Plant Biology 30, 271-280. https://doi.org/10.1071/FP02185

Mahajan, S., Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444, 139–158. https://doi.org/10.1016/j.abb.2005.10.018

Mak, M., Babla, M., Xu, S. C., O’Carrigan, A., Liu, X. H., Gong, Y. M., Holford, P., Chen, Z. H. (2014). Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environmental and Experimental Botany 98, 1– 12. https://doi.org/10.1016/j.envexpbot.2013.10.003

Maleki, A., Naderi, A., Naseri, R., Fathi, A., Bahamin, S. Maleki, R. (2013). Physiological Performance of Soybean Cultivars under Drought Stress. Bull. Env. Pharmacol. Life Sci. 2(6), 38-44.

Miao S., Shi H., Jin J., Liu J., Liu X., Wang G. (2012). Effects of short-term drought and flooding on soybean nodulation and yield at key nodulation stage under pot culture, J. Food Agric. Environ. 10, 819–824.

Navari-Izzo, F., Vangioni, N., Quartacci, M. F. (1990). Lipids of soybean and sunflower seedlings grown under drought conditions. Phytochemistry 29(7), 2119-2123. https://doi.org/10.1016/0031-9422(90)83018-V

Obaton, M., Miquel, M., Robin, P., Conejero, G., Domenach, A. M., Bardin, R. (1982). Influence du de´ficit hydrique sur l’activite´ nitrate-re´ductase et nitroge´nase chez le soja, C.R. Acad. Sci. Paris 294, 1007–1012.

Redman, R. S., Kim, Y. O., Woodward, C. J. D. A., Greer, C., Espino, L. Sharon, L. D., Rusty, J. R. (2011). Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis:a strategy for mitigating impacts of climate change. PLoS ONE 6, e14823–e14823. https://doi.org/10.1371/journal.pone.0014823

Sadeghipour, O., Abbasi, S. (2012). Soybean Response to Drought and Seed Inoculation. World Applied Sciences Journal 17(1), 55-60.

Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research 108, 1–13. https://doi.org/10.1016/j.fcr.2008.03.001

Saxena, N. P., Johansen, C., Saxena, M. C., Silim, S. N. (1993). Selection for drought and salinity tolerance in cool season food legumes. In: Singh KB, MC Saxena, eds. Breeding for stress tolerance in cool season food legumes. UK: Wiley, 245–270.

Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: Common and different paths for plant protection. Curr. Opin. Biotech. 14, 194–199. https://doi.org/10.1016/S0958-1669(03)00030-2

Silva, L. R., Pereira, M. J., Azevedo, J., Mulas, R., Velazquez, E., González-Andrés, F., Valentão, P., Andrade, P. B. (2013) Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds. Food Chem 141(4), 3636–3648. https://doi.org/10.1016/j.foodchem.2013.06.045

Sincik, M., Candogan, B., Demirtas, C., Büyükcangaz, H., Yazgan, S., Göksoy, A. (2008). Deficit irrigation of soya bean [Glycine max (L.) Merr.] in a sub-humid climate. Journal of Agronomy and Crop Science 194, 200–205. https://doi.org/10.1111/j.1439-037X.2008.00307.x

Sionit, N., Kramer, P. J. (1977). Effect of water stress during different stages of growth of soybeans, Agronomy Journal 69, 274-278. https://doi.org/10.2134/agronj1977.00021962006900020018x

Song, Y. S. (1986). Perioxidase activities in relation to drought resistance. Heilongjiang Agric. Sci. 1, 41–44 (in Chinese).

Specht, J. E., Elmore, R. W., Enseihauer, D. E., Klocke, N. W. (1989). Growth stage scheduling criteria for sprinkler-irrigated soybeans. Irrig. Sci. 10, 99–111. https://doi.org/10.1007/BF00265687

Subbarao, G. V., Johansen, C., Slinkard, A. E., Nageswara, R. R. C., Saxena, N. P., Chauhan, Y. S. (1995). Strategies for improving drought resistance in grain legumes. Critical Review of Plant Science 14, 469–523. https://doi.org/10.1080/07352689509701933

Westgate, M. E., Peterson, C. M. (1993). Flower and pod development in water-deficient soybean (Glycine max L. Merr.). J. Exp. Bot. 44, 109–117. https://doi.org/10.1093/jxb/44.1.109

Xie, F. D., Dong, Z., Sun, Y. H., Wang, X. G. (1994). Influence of drought on growth and yield of soybeans at different growth stages. J. Shenyang Agric. Univ. 25(1), 13–16 (in Chinese).

Yamaguchi-Shinozaki, K., Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol.57, 781-803. https://doi.org/10.1146/annurev.arplant.57.032905.105444

Downloads

Published

2019-08-17

How to Cite

Basal, O., & Szabó, A. (2019). INOCULATION ENHANCES SOYBEAN PHYSIOLOGY AND YIELD UNDER MODERATE DROUGHT. LIFE: International Journal of Health and Life-Sciences, 5(2), 01–13. https://doi.org/10.20319/lijhls.2019.52.0113