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Abstract   

This article studies the diffusion problems with a concentrated source which is provided at a sequential time 

steps in 1 dimensional space. The problems are considered for both Gaussian and fractional diffusion 

operators. For the fractional diffusion case, Riemann-Liouville operator with fractional order is used to 

describe the model with diffusion rate slower than normal time scale, which is known as sub diffusive 

problems. Due to this sub diffusive property, the existence and nonexistence behavior of the solution will be 

studied. Since the forcing term will experience a concentrated source at a sequence of time steps, the 

frequency, the time difference and strength of the source may affect the growth rate of the solution. Criteria 

for these effects which may cause for the quenching behavior of the solution will be given. The existence of 

the solution is investigated. The monotone behavior in spatial will be given. The quenching behavior of the 

solution will be studied.  The location of the quenching point will be discussed. 
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1. Introduction 

Let 𝛼 ≤ 1 , 𝑡~, 𝑇, 𝑎, 𝑏, 𝑐, 𝑑  be positive real numbers, 𝐿𝛼𝑢 = 𝑢𝑡 − (𝐷𝑡
1−𝛼𝑢)𝑥𝑥  , where 𝐷𝑡

1−𝛼𝑢 

denotes the Riemann-Liouville derivative with fractional order, when 𝛼 < 1 and 𝐿1 is the heat operator.   Let 

𝐷𝑎 = (0, 𝑎) be the finite interval on R. For positive integer 𝑁 and 𝑘 = 1,2,⋯ ,𝑁, let 𝑡𝑘 = 𝑘 ⋅ 𝑡~. 

 

We consider the problem 

𝐿𝛼𝑢(𝑥, 𝑡) = 𝑑 ∑ 𝛿(𝑡 − 𝑡𝑘)𝑓(𝑢(𝑥, 𝑡))
𝑁
𝑘=1 ,                  (1) 

(𝑥, 𝑡) ∈ 𝐷𝑎 × (0, 𝑇), with initial condition 

 𝑢(𝑥, 0) ≡ 0,                             (2) 

The Dirchlet boundary conditions are posed as  

𝑢(0, 𝑡) = 0 ∧ 𝑢(𝑎, 𝑡) = 0𝑓𝑜𝑟𝑡 > 0.           (3) 

Note that 𝛿(𝑡)  denotes is the Dirac Delta function, and 𝑓(𝑢) > 0, 𝑓′(𝑢) > 0, 𝑓′′(𝑢) ≥ 0 , for 𝑢 ≥

0, 𝑙𝑖𝑚
𝑢→𝑐−𝑓(𝑢)=∞.

  

 

2. Literature Review 

The condition for the forcing term 𝑓(𝑢) becomes unbounded when the solution 𝑢 approaches 𝑐 

was introduced by Kawarada (1975) and is known as quenching behavior of the solution. These behavior 

for the Gaussian diffusion problems were studied by many mathematicians, and serval different directions 

of investigation are inspired. For example, Chan and Kong (1995) used the quenching model to describe the 

sudden rapid reaction rate change at explosion; Chan (2011) showed the criteria for the solution of parabolic 

problem to quench in multi-dimensional space. Some mathematicians studied the effect of the domain size 

on the quenching behavior of the solution.  In particular, for n=1, the critical length is known as the length 

of spatial domain for which the solution exists for all time when 𝑎 < 𝑎⋅, and quenches when for 𝑎 > 𝑎⋅.  

Fruitful results in theoretical and numerical sense were obtained.  For 𝛼 = 1, the theoretical proof of unique 

critical length and a computational method of finding it were finished by Chan and Chen (1989), Chan and 

Kwong (1989), and Chan (1993).  For n-dimensional problem, the size of the critical domains was studied 

by Chan (2011), Chan and Chan and Liu (2017).  Furthermore, the quenching criteria for the concentrated 

source was studied by Chan (2011), Chan and Tragoonsirisak (2008) etc. 

In this paper, the problem (1) -(2) with 𝛼, that is either the classical Gaussian diffusive operator or 

the fractional diffusive operator, with concentrated sources appear at sequential time steps are investigated 

accordingly.  For 𝛼 < 1, the operator  

𝐿𝛼𝑢(𝑥, 𝑡) = 𝑢𝑡(𝑥, 𝑡) − (𝐷𝑡
1−𝛼𝑢(𝑥, 𝑡))

𝑥𝑥
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is used to simulate the Brownian motion with diffusion rate which is slower than normal time scale.   The 

anomalous diffusion has been used in the modeling of many fields, for example, for those of turbulence, 

seepage in porous media, pollution control, etc. (c.f. Ah, Angulo and Ruiz-Medina (2005) Chan (1993), 

Meerschaert and Tadjeran (2004), Greenenko, Chechkin and Shulga (2004), Schula and M. Schulz (2006)).  

In particular, we consider the situation that the domain has microscopic pores which has a low conductivity 

rate in a porous media material. The fractional operator is now used to model this problem in which the 

medium is called subdiffusive (c.f. see Metzler and J. Klafter, 2000, Podlubny, 1999, Trujillo, 2006 etc.).    

The concentrated sources appear in the form 𝛿(𝑥 − 𝑏)𝑓(𝑢)  in 1-dimensional case can be 

interpreted as an energy source stationary at a particular position, and this energy is not only given at that 

point but also the surrounding. The energy may be accumulated in the nearby spatial region, and hence may 

lead to the solution reaches a critical value so that the forcing term becomes unbounded.  For these 

concentrated source problems in 1-dimensional space subdiffusive medium, Olmstead and Roberts (2008), 

Chan and Liu (2018), Liu (2019) investigated the blow-up phenomena at 𝑥 = 𝑏, that is the forcing term 

appears in the form of 𝛿(𝑥 − 𝑏)𝑓(𝑢(𝑥, 𝑡))  where 𝛿(𝑥 − 𝑏)  denotes the Dirac delta function, and 𝑓(𝑢) 

satisfies blow-up behavior. Since the diffusive rate is slower than normal scale, the energy can be 

accumulated much higher, and hence unboundedness of the forcing term is more likely to occur.   

Furthermore, when there is extra energy supply given into the system with a very short period of 

time, when compare with the whole process, we can assume that these energies appear at impulsive form.  

Liu and Chang (2016) studied the problems with impulsive effects on the solution at constant time steps. 

They showed that if 𝑡̂ denotes the time-step for the solution 𝑢 experience the impulsive effects, shorter the 

time-step implies more frequency the impulses take effect on the solution, and also, they gave the condition 

for the non-existence of the solution.  

For 𝛼 = 1, the green functions for the problems are given as 

𝐺1(𝑥, 𝑡 − 𝜏, 𝜉) = ∑
2

𝑎

∞

𝑛=1

𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝜉

𝑎
) 𝑒

−(
𝑛𝜋
𝑎
)
2
(𝑡−𝜏)

, 

in 𝐷𝑎 with 𝐺1(𝑥, 𝑡 − 𝜏; 𝜉) = 0 for 𝑡 < 𝜏.  

For 𝛼 < 1, the operator is used to describe the Brownian motion so that its diffusive rate is on a 

slower than normal time scale. And hence those problems are denoted as subdiffusive problem, or problem 

in a sub diffusive medium. In term of the Green's function 𝐺𝛼(𝑥, 𝑡 − 𝜏; 𝜉) , by considering the integral 

representation form, it is capable to prove the existence of a continuous solution 𝑢 of the sub diffusive 

differential equation in domain [0, 𝑎], and later on Liu and Huang (2018) gave similar results in to infinite 

domain. 

 

3. Preliminary Results 

Wyss and Wyss (2001) showed that the Green's function for the operator 𝐿𝛼 , denotes as 

𝐺𝛼(𝑥, 𝑡 − 𝜏; 𝜉), related with the classical diffusive Green's function 𝐺1(𝑥, 𝑡 − 𝜏; 𝜉) as 

𝐺𝛼(𝑥, 𝑡; 𝜉) = ∫ 𝑔𝛼(𝑧)𝐺1(𝑥, 𝑡
𝛼𝑧; 𝜉)

∞

0
𝑑𝑧,       (4) 
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where 𝑔𝛼(𝑧) = ∑
(−1)𝑘

𝛤(1−𝛼−𝛼𝑘)
∞
𝑘=0 ⋅

𝑧𝑘

𝑘!
 , 𝑧 > 0 , is known as Mainardi's function. This function satisfies 

𝑔𝛼(𝑧) ≥ 0  for 𝑧 ≥ 0 , ∫ 𝑔𝛼(𝑧)𝑑𝑧
∞

0
= 1 , and 𝑔𝛼(𝑧)  tends to 0  exponentially as 𝑧 → ∞ .   Furthermore, let 

𝜇, 𝜈 > 0, the Mittag-Leffler function is defined as 

𝐸𝜇,𝜈(𝑧) = ∑
𝑧𝑘

𝛤(𝜈 + 𝜇𝑘)

∞

𝑘=0

, 

which is entire for 𝑧 ∈ 𝐶 where 𝐶 is the complex plane (cf. Haubold, Mathai and Saxena, 2011). In particular, 

we get 𝐸1,1(𝑧) = 𝑒𝑧.  It follows from Chan and Liu (2018) that the integrals, for 𝑛 = 1,2,3,⋯, 

∫ 𝑔𝛼(𝑧)𝑒
−𝑛2𝜋2

𝑎2
(𝑡−𝜏)𝛼𝑧

∞

0

𝑑𝑧 = 𝐸𝛼,1 (
−𝑛2𝜋2

𝑎2
(𝑡 − 𝜏)𝛼), 

and hence 

𝐺𝛼(𝑥, 𝑡 − 𝜏; 𝜉) =
2

𝑎
∑ 𝑠𝑖𝑛

𝑛𝜋𝜉

𝑎
∞
𝑛=1 𝑠𝑖𝑛

𝑛𝜋𝑥

𝑎
𝐸𝛼,1 (

−𝑛2𝜋2

𝑎2
(𝑡 − 𝜏)𝛼).  (5) 

We note that 𝐺𝛼(𝑥, 𝑡 − 𝜏; 𝜉)  is positive when 𝑡 > 𝜏  and 𝑥, 𝜉  are inside (0, 𝑎) . The solution 𝑢of 

problem (1)-(3) can now be transformed into its integral form by using these Green's functions. When 𝑡𝑁 <

𝑇, we have 

𝑢(𝑥, 𝑡) = 𝑑∑ ∫ 𝐺𝛼(𝑥, 𝑡 − 𝑡𝑘, 𝜉)𝑓(𝑢(𝜉, 𝑡𝑘))𝑑𝜉
𝑎

0
𝑁
𝑘=1  for (𝑥, 𝑡) ∈ 𝐷𝑎 × [0, 𝑇).   (6) 

To show the existence of the solution, let us consider the case for any fixed 𝑥 ∈ 𝐷𝑎 and perform 

induction on 𝑘. 

  For 𝑘 = 1, let us consider the problem 

𝐿𝛼𝑣 = 𝑑𝛿(𝑡 − 𝑡1)𝑓(𝑣(𝑥, 𝑡)) for (𝑥, 𝑡) ∈ 𝐷𝑎 × (0, 𝑡1~),      (7) 

where 𝑡1 < 𝑡1~ < 𝑡2, and assume that 𝑣 on 𝐷𝑎. 

For 𝑖 = 1,2,3,⋯, we define 𝑢𝑖(𝑥, 𝑡) = 𝑑 ∫ 𝐺𝛼(𝑥, 𝑡 − 𝑡1, 𝜉)𝑓(𝑢𝑖−1(𝜉, 𝑡1))𝑑𝜉
𝑎

0
 and 𝑢0 = 0, for 0 < 𝑡 < 𝑡1~. 

By the increasing nature of 𝑓(𝑢), the sequence {𝑢𝑖}𝑖=1
∞  forms an increasing sequence with respect 

to 𝑖 which is bounded above by 𝑐.  Hence the limit of the sequence {𝑢𝑖}𝑖=1
∞  , say 𝑢, satisfies the integral 

solution.   Through a similar discussion as in the proof of Theorem 4.1 of Chan and Liu (2018) and the 

maximum principle (Chan and Liu (2016), Liu (2016)) that 𝑢 satisfies equation (7) and is unique. 

For 𝑘 = 2, let us define 

 𝑢𝑖(𝑥, 𝑡) = 𝑑 ∫ 𝐺𝛼(𝑥, 𝑡 − 𝑡1, 𝜉)𝑓(𝑢𝑖−1(𝜉, 𝑡1))𝑑𝜉
𝑎

0
+ 𝑑 ∫ 𝐺𝛼(𝑥, 𝑡 − 𝑡2, 𝜉)𝑓(𝑢𝑖−1(𝜉, 𝑡2))𝑑𝜉

𝑎

0
 

for 𝑖 = 1,2,3,⋯  and 𝑢0 = 0 , for 0 < 𝑡 < 𝑡2~  where 𝑡2 < 𝑡2~ < 𝑡3 .  Then the sequence {𝑢𝑖}𝑖=1
∞   forms an 

increasing sequence which is bounded above by 𝑐. A similar argument as before shows that the solution 𝑢 

exists and unique in 𝐷𝑎 × (0. 𝑡2~) . In the case when 𝑢(𝑥, 𝑡) < 𝑐  for (𝑥, 𝑡) ∈ 𝐷𝑎 × [0, 𝑡~)  with 𝑡~< 𝑇 , the 

solution 𝑢exists.  Hence, we have the following results. 
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Theorem 3.1  

There exists 𝑇 > 0 such that the solution integral solution 𝑢 of (1) exists for 𝑡 ∈ (0, 𝑇).  If 𝑡𝑞 > 0 

is the sup of the existence time of 𝑢, then 𝑙𝑖𝑚
𝑡→𝑡𝑞

−𝑚𝑎𝑥
𝑥

𝑢(𝑥,𝑡)=𝑐
.  

  

Let 𝑇 ≤ ∞ be the largest existence time for the solution 𝑢, then next theorem follows. 

Theorem 3.2 

The solution 𝑢(𝑥, 𝑡) is increasing with respect to 𝑡 < 𝑇. 

 

Proof: Let 𝑤 = 𝑢𝑡 , then 𝑤 satisfies 𝐿𝛼𝑤 = 𝑑∑ 𝛿(𝑡 − 𝑡𝑘)𝑓
′(𝑢)𝑤𝑚

𝑘=1   where 𝑡𝑚 < 𝑇  with 𝑚 ≤ 𝑁 , 

𝑤(𝑥, 0) ≥ 0  and boundary condition 𝑤(⋅, 𝑡) = 0  on boundary of 𝐷𝑎 .  Then, by applying the maximum 

principle to the problem, we get 𝑤 ≥ 0 on 𝐷𝑎 × (0, 𝑡𝑚). 

Due to the maximum principles for the diffusive problems, larger the forcing term will lead to larger the 

solution. Therefore, in problem (1) -(3), the factor 𝑑 plays an important role on the solution 𝑢, then we 

proved the next theorem.   

Theorem 3.3 

Let 𝑢𝑑(𝑥, 𝑡) be the solution of the problem (1) -(3) corresponding to the parameter  𝑑 and 𝑇𝑑 be 

its existence time. Then for 𝑑1 > 𝑑2, we get 𝑢𝑑1(𝑥, 𝑡) ≥ 𝑢𝑑2(𝑥, 𝑡) on 𝐷𝑎 × (0, 𝑇𝑑1).  

Next, to study the location of quenching points, we obtain the following results by using the symmetric 

property and zero boundary condition of the solution 𝑢. 

Theorem 3.4 

For 𝑡 > 0, 𝑚𝑎𝑥
𝐷𝑎

𝑢(𝑥, 𝑡) = 𝑢 (
𝑎

2
, 𝑡). 

 

 Proof:  Let 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑢(𝑎 − 𝑥, 𝑡), then 𝑤(𝑥, 𝑡) satisfies 

𝐿𝛼𝑤 = 𝑑∑𝛿(𝑡 − 𝑡𝑘)𝑓
′(𝜁)𝑤

𝑁

𝑘=1

, 

𝑤(𝑥, 0) = 0, and 𝑤(0, 𝑡) = 0 = 𝑤(𝑎, 𝑡).  Combining the arguments in Theorems 2.4, 2.5 of Liu (2016) that 

𝑤(𝑥, 𝑡) = 0.  Therefore, by Mean Value Theorem we get 𝑢𝑥 (
𝑎

2
, 𝑡) = 0, 𝑢𝑥(𝑥, 𝑡) > 0 for  0 < 𝑥 <

𝑎

2
, and 

𝑢𝑥(𝑥, 𝑡) < 0 for 
𝑎

2
< 𝑥 < 𝑎.  The theorem follows.  

 

 4. Main Results: Quenching Criteria for the Solution 

 Theorem 4.1 

The solution 𝑢quenches at time 𝑇when 𝑑 is large enough. 

Proof: The Green's function is given as 
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𝐺𝛼(𝑥, 𝑡 − 𝜏, 𝜉) = ∑
2

𝑎

∞

𝑛=1

𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝜉

𝑎
)𝐸𝛼,1 (

−𝑛2𝜋2

𝑎2
(𝑡 − 𝜏)𝛼). 

If there is 𝑘 > 𝑁 such that 𝑇 < 𝑡𝑘 = 𝑘𝑡~ and 𝑢 quenches at 𝑡 = 𝑇, the result follows. Otherwise, 

assume that 𝑢(𝑥, 𝑡) < 𝑐 for 𝑡 < 𝑁𝑡~.  According to the increasing behavior of 𝑢 with respect to 𝑡, we get 

𝑢(𝑥, 𝑡) > 0  and hence 𝑓(𝑢(𝑥, 𝑡)) > 𝑓(0)  for 𝑥 ∈ 𝐷𝑎  and  0 < 𝑡 < 𝑁𝑡~ .  Then by use of the integral 

representation form of the solution 𝑢, we get 

𝑢 (
𝑎

2
, 𝑡) = 𝑑∑ ∫ 𝐺𝛼 (

𝑎

2
, 𝑡 − 𝑡𝑘, 𝜉) 𝑓(𝑢(𝜉, 𝑡𝑘))𝑑𝜉

𝑎

0
𝑁
𝑘=1                 

            ≥ 𝑑𝑓(0)∑ ∫ ∑
2

𝑎
∞
𝑛=1 𝑠𝑖𝑛 (

𝑛𝜋

2
) 𝑠𝑖𝑛 (

𝑛𝜋𝜉

𝑎
) 𝐸𝛼,1 (

−𝑛2𝜋2

𝑎2
(𝑡 − 𝑘𝑡~)𝛼) 𝑑𝜉

𝑎

0
𝑁
𝑘=1  

            𝑑𝑓(0)∑ ∑
(−1)𝑚4

(2𝑚+1)𝜋
𝐸𝛼,1 (

−(2𝑚+1)2𝜋2

𝑎2
(𝑡 − 𝑘𝑡~)𝛼)∞

𝑚=1
𝑁
𝑘=1 . 

Note that ∑ ∑
(−1)𝑚4

(2𝑚+1)𝜋
𝐸𝛼,1 (

−(2𝑚+1)2𝜋2

𝑎2
(𝑡 − 𝑘𝑡~)𝛼)∞

𝑚=1
𝑁
𝑘=1  is bounded above by some 𝑀 > 0, and hence is 

bounded above when 0 < 𝑡 ≤ (𝑁 −
1

2
) 𝑡~.  For 𝑑 >

𝑐

𝑓(0)𝑀
, there is 𝑇 such that 𝑢 (

𝑎

2
, 𝑇) > 𝑐.  This gives that 

the solution 𝑢 reaches c in a time less than T, and hence the solution quenches in a finite time. 

Consequently, from Theorem 1.4, the solution attends its maximum value at the center, that is if 𝑢(𝑥, 𝑡) 

quenches in a finite time, then 𝑥 =
𝑎

2
 is a quenching point. 

Theorem 4.2 

For small enough 𝑑, the solution 𝑢 bounded above by 𝑐 for all time. 

Proof:  Firstly, we show that 𝑢 does not quench at time 𝑡 = 𝑘𝑡~ for any 𝑘 = 1,2,⋯ ,𝑁.  Suppose not, there 

is 𝑘1 such that 𝑢 (
𝑎

2
, 𝑡) → 𝑐 when 𝑡 → 𝑘1𝑡~.  There is 𝜂 > 0 such that 

𝑢 (
𝑎

2
, (𝑘1 − 1)𝑡~) < 𝑐 − 𝜂.  For (𝑘1 −

1

2
) 𝑡~< 𝑡 < 𝑘1𝑡~ and 𝑥 ∈ 𝐷𝑎, 

𝑢(𝑥, 𝑡) ≤ 𝑢 (
𝑎

2
, 𝑡) = 𝑑 ∑ ∫ 𝐺𝛼 (

𝑎

2
, 𝑡 − 𝑡𝑘, 𝜉) 𝑓(𝑢(𝜉, 𝑡𝑘))𝑑𝜉

𝑎

0

𝑘1−1
𝑘=1         

≤ 𝑑(𝑘1 − 1)𝑓 (𝑢 (
𝑎

2
, (𝑘1 − 1)𝑡~)) ∑

(−1)𝑚4

(2𝑚 + 1)𝜋
𝐸𝛼,1 (

−(2𝑚 + 1)2𝜋2

𝑎2
(𝑡 − (𝑘1 − 1)𝑡~)𝛼)

∞

𝑚=1

 

≤ 𝑑(𝑘1 − 1)𝑓 (𝑢 (
𝑎

2
, (𝑘1 − 1)𝑡~)) ∑

(−1)𝑚4

(2𝑚 + 1)𝜋
𝐸𝛼,1 (

−(2𝑚 + 1)2𝜋2

𝑎2
(
1

2
𝑡~)

𝛼

)

∞

𝑚=1

. 

Since ∑
(−1)𝑚4

(2𝑚+1)𝜋
𝐸𝛼,1 (

−(2𝑚+1)2𝜋2

𝑎2
(
1

2
𝑡~)

𝛼

)∞
𝑚=1 < 𝑀   for some 𝑀 , by taking 𝑑  small enough, we get 
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𝑢(𝑥, 𝑡) ≤ 𝑐 − 𝜂 for (𝑘1 −
1

2
) 𝑡~< 𝑡 < 𝑘1𝑡~ and 𝑥 ∈ 𝐷𝑎. This contradicts with 𝑢 (

𝑎

2
, 𝑡) → 𝑐 when 𝑡 → 𝑘1𝑡~. 

A similar argument obtains 

𝑢(𝑥, 𝑡) ≤ 𝑢 (
𝑎

2
, 𝑡) ≤ 𝑑𝑁𝑓 (𝑢 (

𝑎

2
, 𝑁𝑡~)) ∑

(−1)𝑚4

(2𝑚 + 1)𝜋
𝐸𝛼,1 (

−(2𝑚 + 1)2𝜋2

𝑎2
(
1

2
𝑡~)

𝛼

)

∞

𝑚=1

 

for any 𝑡, which is less than 𝑐 when 𝑑 is small. 

Combining the above theorems with Theorem 1.3, we get that there is 𝑑  such that the solution 𝑢 

quenches in a finite time when 𝑑 > 𝑑 , and 𝑢 is bounded away from 𝑐 in all time when 𝑑 < 𝑑 . 

  

  

5. Main Results: Quenching Criteria for the Solution of 𝛼 = 1 on 𝐷∞ 

The above results are now extended to the problem in infinite domain 𝐷∞ = (−∞,∞), that is, 

consider the problem (1)-(2) with boundary condition: |𝑢(𝑥, 𝑡)| → 0 as |𝑥| → ∞.  The integral 

representation form is given as 

𝑢(𝑥, 𝑡) = 𝑑∑∫ 𝐺1(𝑥, 𝑡 − 𝑡𝑘, 𝜉)𝑓(𝑢(𝜉, 𝑡𝑘))𝑑𝜉
∞

−∞

𝑁

𝑘=1

. 

 Similar to the finite interval situation, we have location for the maximum value of the solution. 

Theorem 5.1 

For 𝑡 > 0, 𝑚𝑎𝑥
𝐷∞

𝑢(𝑥, 𝑡) = 𝑢(0, 𝑡). 

  

Proof:  Let 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑢(−𝑥, 𝑡), then 𝑤(𝑥, 𝑡) satisfies 

𝐿𝛼𝑤 = 𝑑∑𝛿(𝑡 − 𝑡𝑘)𝑓
′(𝜁)𝑤

𝑁

𝑘=1

, 

𝑤(𝑥, 0) = 0, and |𝑤(𝑥, 𝑡)| → 0 as |𝑥| → ∞. It follows from Theorems 2.4, 2.5 of Liu (2016) that 𝑤(𝑥, 𝑡) =

0.  Therefore, by Mean Value Theorem we get 𝑢𝑥(0, 𝑡) = 0, 𝑢𝑥(𝑥, 𝑡) > 0 for  −∞ < 𝑥 < 0, and 𝑢𝑥(𝑥, 𝑡) <

0 for 0 < 𝑥 < ∞.  The theorem follows. 

  

The quenching and non-quenching criteria for the problem are given in the following theorems.  

Theorem 5.2 

The solution 𝑢 quenches at time  𝑇 for 𝑑 is large. 

  

Proof:   The Green's function is given as 

𝐺1(𝑥, 𝑡 − 𝜏, 𝜉) =
1

√4𝜋(𝑡 − 𝜏)
𝑒
−(𝑥−𝜉)2

4(𝑡−𝜏) . 
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If there is 𝑘 < 𝑁 such that 𝑇 < 𝑡𝑘 = 𝑘𝑡~ and 𝑢 quenches at 𝑡 = 𝑇, the result follows.  Otherwise, 

assume that 𝑢(𝑥, 𝑡) < 𝑐 for 𝑡 < 𝑁𝑡~.  According to the increasing behavior of 𝑢 with respect to 𝑡, we get 

𝑢(𝑥, 𝑡) > 0 and hence 𝑓(𝑢(𝑥, 𝑡)) > 𝑓(0) for 𝑥 ∈ 𝐷∞ and 0 < 𝑡 < 𝑁𝑡~.  Then by use of the green’s function 

and transform   the solution 𝑢to its corresponding integral form, we get for 𝑡 > 0, 

𝑢(0, 𝑡) = 𝑑∑∫ 𝐺1(0, 𝑡 − 𝑡𝑘, 𝜉)𝑓(𝑢(𝜉, 𝑡𝑘))𝑑𝜉
∞

−∞

𝑁

𝑘=1

 

≥ 𝑑𝑓(0)∑∫ 𝐺1(0, 𝑡 − 𝑡𝑘, 𝜉)𝑑𝜉
∞

−∞

𝑁

𝑘=1

 

𝑑𝑓(0)∑∫
1

√4𝜋(𝑡 − 𝑡𝑘)
𝑒

−𝜉2

4(𝑡−𝑡𝑘)
∞

−∞

𝑁

𝑘=1

𝑑𝜉 

𝑑𝑓(0)𝑁. 

Then for 𝑑 >
𝑐

𝑓(0)
, the solution 𝑢 quenches in a finite time. 

  

As a consequence, the above theorem shows that if 𝑢(𝑥, 𝑡) quenches in a finite time, and  𝑥 = 0is 

a quenching point. 

Theorem 5.3  

For small enough 𝑑, the solution 𝑢 remains bounded above by 𝑐 for all time. 

  

Proof: We claim that 𝑢 does not quench at time 𝑡 = 𝑘𝑡~ for any 𝑘 = 1,2,⋯ ,𝑁. 

Suppose not, there is 𝑘1 such that 𝑢(0, 𝑡) → 𝑐 when 𝑡 → 𝑘1𝑡~.  There is 𝜂 > 0 such that 𝑢(0, (𝑘1 − 1)𝑡~) <

𝑐 − 𝜂 . For (𝑘1 −
1

2
) 𝑡~< 𝑡 < 𝑘1𝑡~ and 𝑥 ∈ 𝐷∞, 

 

𝑢(𝑥, 𝑡) ≤ 𝑢(0, 𝑡) = 𝑑 ∑ ∫ 𝐺1(0, 𝑡 − 𝑡𝑘, 𝜉)𝑓(𝑢(𝜉, 𝑡𝑘))𝑑𝜉
∞

−∞

𝑘1−1

𝑘=1

 

 

≤ 𝑑𝑓(𝑢(0, (𝑘1 − 1)𝑡~)) ∑ ∫ 𝐺1(0, 𝑡 − 𝑡𝑘, 𝜉)𝑑𝜉
∞

−∞

𝑘1−1

𝑘=1

 

𝑑(𝑘1 − 1)𝑓(𝑢(0, (𝑘1 − 1)𝑡~)). 

By taking 𝑑 <
𝑐−𝜂

(𝑘1−1)𝑓(𝑢(0,(𝑘1−1)𝑡~))
 , we get 𝑢(𝑥, 𝑡) ≤ 𝑐 − 𝜂   for (𝑘1 −

1

2
) 𝑡~< 𝑡 < 𝑘1𝑡~  and 𝑥 ∈ 𝐷∞ . This 

contradicts with 𝑢(0, 𝑡) → 𝑐 when 𝑡 → 𝑘1𝑡~. 
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A similar argument obtains 𝑢(𝑥, 𝑡) ≤ 𝑢(0, 𝑡) ≤ 𝑑𝑁𝑓(𝑢(0, 𝑁𝑡~))  for any 𝑡 , which is less than 𝑐 

when 𝑑 is small.  

6.  Conclusions 

In this study, the sequential time source problems were studied in classical heat and fractional 

diffusive operators as well. We showed the increasing nature of the solution with respect to time, so that the 

solution of the problem might reach its critical value such that the forcing terms become unbounded in a 

finite time, which is also known as quenching. In particular, we showed that if the weight parameter of the 

source is small, the energy cannot be accumulated large enough, so that the solution exists for all time. 

Conversely, when the parameter is large, the energy will grow fast enough for quenching to occur. These 

results advance the existence properties of the concentrated source problems, and deepen the understanding 

of the role of fractional derivatives and the singularity of solution. It also provided another analytical tool 

for the study of concentrated sources’ problem in sub diffusive medium. The variable sequential steps 

problem is worth for further discussion, especially, with increasing time intervals which can be interpreted 

prolonging the effects of the energy sources in the physical situation.   
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