
214 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

Al-Badarneh et al., 2016 

Volume 2 Issue 1, pp. 214-234 

Date of Publication: 19
th

 December, 2016 

DOI- https://dx.doi.org/10.20319/mijst.2016.s21.214234 

This paper can be cited as: Al-Badarneh, A., Al-Abdi, A., Al-Shboul, S., & Najadat, H. (2016). 

Survey of Similarity Join Algorithms Based on Mapreduce. MATTER: International Journal 

of Science and Technology, 2(1), 214-234. 

This work is licensed under the Creative Commons Attribution-Non Commercial 4.0 

International License. To view a copy of this license, visit 

http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative Commons, PO Box 

1866, Mountain View, CA 94042, USA. 
 

 

SURVEY OF SIMILARITY JOIN ALGORITHMS BASED 

ON MAPREDUCE 

 
Amer Al-Badarneh 

Computer Information System Department, Jordan University of Science and Technology, 

Irbid, Jordan 

amerb@just.edu.jo 

 
Amnah Al-Abdi 

Computer Science Department, Jordan University of Science and Technology, Irbid, 

Jordan      

amalabdi15@cit.just.edu.jo 

 
Sana’a Al-Shboul 

Computer Science Department, Jordan University of Science and Technology, Irbid, 

Jordan       

smalshboul15@cit.just.edu.jo 

 
Hassan Najadat 

Computer Information System Department, Jordan University of Science and Technology, 

Irbid, Jordan 

najadat@just.edu.jo 

 
 

 

amerb@just.edu.jo
amalabdi15@cit.just.edu.jo
smalshboul15@cit.just.edu.jo
najadat@just.edu.jo


215 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

Abstract 

Similarity Join is a data processing and analysis operation that retrieves all data pairs 

whose their distance is less than a pre-defined threshold. The similarity join algorithms 

are used in different real world applications such as finding similarity in documents, 

images, and strings. In this survey we will explain some of the similarity join algorithms 

which are based on MapReduce approach. These algorithms are: Set-Similarity Join, 

SSJ-2R, MRSimJoin, Pair-wise similarity, multi-sig-er method, Trie-join, and PreJoin 

algorithm. We then make a comparison between these algorithms according to some 

criteria and discuss the results. 

Keywords 

Hadoop, MapReduce, Similarity Join 
 

 

1. Introduction 

MapReduce is the main framework for distributed processing, it is providing the 

requirements to process huge amount of data in a distributed approach. The similarity 

join algorithms are the algorithms which are used to find the similarity between two 

objects who’s their distance is less than a predefined threshold. 

MapReduce approach is an efficient way to solve the similarity join problem 

because it processes huge datasets by splitting them into distinct chunks which are 

processed in parallel to reduce the time consuming. There are three functions which are 

used to find the similarity between two objects depending on the type of the objects: 

Jaccard similarity to find the similarity between a finite numbers of sets, Cosine 

similarity to find the similarity between two vectors, and Edit distance (ED) to detect the 

similarity between two strings. In this survey we will explain some of the similarity join 

algorithms that are based on MapReduce approach. Theses algorithms will be explained 

in details in section 2 but we can summarize them just a bit in this section. 

SSJ-2R [1] algorithm is an algorithm that is looking for discovering every pair of 

objects with high similarity larger than the threshold according to some similarity 

function. This algorithm will be explained in section 2.1. 



216 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

PreJoin Algorithm [2] is an algorithm that is solving the problem resulting from applying 

Trie-based similarity join. This algorithm will be explained in section 2.2 

Pair-wise similarity computation [3] is assigning objects to multiple overlapping 

clusters, but redundant pair’s will be produced because similar objects may share more 

than one cluster, in section 2.3 we will explain the approach that it is used to eliminates 

this redundant. 

MRSimJoin algorithm [4], [5], [6] is an algorithm that is designing and 

implementing techniques of cloud-based Similarity Joins. This algorithm will be 

explained in section 2.4. 

Set-Similarity Join [7] identify all pairs of high similar sets in a parallel 

approaches. These approaches will be explained in details in section 2.5. 

Trie-join Algorithm [8] is an algorithm that is finding the similarity between two 

strings. This algorithm will be explained in section 2.6 

The multi-sig-er method [9] is a multi-signature method based parallel entity 

resolution. This method will be explained in section 2.7. 

In section 3, we will make a comparison between the previous algorithms 

according to some criteria and then analyses the results. 

 

2. Related Work 
 

In this section we will explain the similarity join algorithms that are mentioned in 

previous section. 

2.1 SSJ-2R Algorithm 
 

SSJ-2R algorithm based on MapReduce framework with speeding up the running 

time by factor 4.5, it is discovering every pair of objects which their similarity greater 

than a threshold according to some similarity function. 

To solve the similarity self-join problem we can divide it into the following stages: the 

first stage is the signature scheme that find a compact representation of each document. 

The second stage is the candidate generation who's identifying potentially similar 

document pairs given their signatures, the third stage is the verification that is computing 

document similarity using measure the cosine distance, and the final stage is the indexing 



217 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

which is a data structure to speed up candidate generation and verification. 

There are two techniques to find the signature for the document: full filtering and 

prefix technique. In full filtering technique the signature of the document is determined 

by the terms that are appearing in the document and sorted in an inverted index, it is 

usually used to find pairs of document which are sharing at least one term. In prefix 

technique the signature (S) identify which terms appearing in the document are greater 

than or equal to the largest integer (b(d)) of the artificial document, so if two signatures 

of two documents have empty intersection then they have similarity below the threshold 

so it is not a candidate pair. The following explained algorithms are based on prefix 

filtering technique. 

2.1.1 Double Pass Map Reduce Prefix Filtering (SSJ2) 

This algorithm sort the terms frequency in decreasing order and then the most 

frequent term will be discarded, this manner reduce the length of the inverted list. During 

the index phase inverted lists are hashed randomly to several files, this will spread the 

longest list uniformly over the file. The reducer receives only the contribution from terms 

t>bj that is mean there is no enough information to compute the similarity, so it will need 

two extra I/O operation to receive the two documents from distributed file system. 

2.1.2 Double Pass MapReduce Prefix Filtering with Reminder File (SSJ-2R) 

To avoid the remote random access in SSJ-2, SSJ-2R save the pruned portion for 

every document in a reminder file during indexing phase, this will be better regained by 

each node from the Distributed File System (DFS). The reminder file doesn't contain all 

the information needed for similarity, so it submits the document with some missing 

information to the reducer and define the keys produced by the map. A new map function 

is defined; for every couples of document in a specific inverted list, the map function 

generate as keys a pair of document IDs, the first one is di (Least Pruned Document)LDP, 

and as a values the MPD (Most Pruned Document) djand the used contribution w: 

<<LDPij, MPDij>, w=di.dj>. The second Map function id defined, it takes as input the 

collection and the output is the documents <i, di> → (<i,*>, di), then sort the keys that 

are produced by the two mentioned Map functions increasingly to obtain the pair <i,*> 



218 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

with the document di followed by every document pair in which (i) is refer to the least 

pruned document, finally they override the group operator to determine whether the two 

keys are equivalent or not. based on the least pruned document, two keys <i, j> and <a, 

b> are equivalent if and only if i = a, so the input of the reducer is a key <i,*> followed 

by values like weights, followed by a bar of contributions that are related to the same 

document j being MPD, then they collect these contributions and added them to the dot 

product between di and dj. 

 

2.1.3 Partitioning 

The size of the reminder file will grow when collection size is increased, this will 

reduce the scalability of the algorithm. We can solve this problem by partitioning the 

reminder file, and splitting it into K (a user defined parameter) nearly equalized 

parts(chunks) in which the non-indexed portion of document falls into (1/ K) using 

Hadoop’s partition function Map is done on MPD, all (i, j) pairs are mapped to a reducer 

in the (j/K) group, the key (i,*) and it is related value di are repeated K times, so the 

content of LPD can be submitted to each reducer, so the reducer used to load and store 

chunk of reminder file. 

2.2 PreJoin Algorithm 

The problem of Trie-based algorithm is the large size of the active nodes, and the 

large edit distance threshold (τ), so when the string set is large, then the trie will be 

larger, to solve this problem they proposed new algorithm called PreJoin, using preorder 

traverse and a new generation active node method. 

PreJoin algorithm: it is generating the active nodes for the next child and it is 

siblings, so when reach any sibling the active nodes will be available, PreJoin algorithm 

reorder the sibling nodes to decide the next subtrie to be visited, instead of using preorder 

traverse like in Trie-PathStack algorithm. Actually each trie leaf represent a string, so 

many nodes may represent strings that are contained by another strings, these nodes are 

called End of Strings (EOS) or logical variables. 

PreJoin algorithm has the same steps of Trie-Path Stack algorithm except that 

Prejoin eliminating unnecessary active nodes during generation active nodes phase, but 



219 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

Trie-Path Stack algorithm generates the active nodes then eliminate the unnecessary 

active nodes in pruning phase, so PreJoin algorithm proposed Novel Active Nodes 

Generation Method that contains three rules. 

The first rule of Novel Active Nodes Generation Method is the symmetry 

property, this property avoids adding all the ancestors and descendants active nodes of 

node m into active nodes of node n, as follows suppose we have a current processed node 

n at depth i, then the number of deletion operations that is needed to transform the string 

n to string m, so the m nodes that lies at depth less than i- τ are the active nodes of n, 

which is the ancestors of n, the same thing for insertion operation, the summation of 

insertion operations that is needed to transform the string n to string m, so the m nodes 

that lies at depth larger than i+ τ are the active nodes of node n, which is the descendants 

of n, in addition to the node n that is of type EOS, the similarity algorithm search for the 

descendant nodes m that are of Type EOS and with edit distance τ from node n. the 

second rule nodes that are already traversed will not include in active nodes. The third 

rule when generate the active nodes of the current node from it is parent's active nodes 

the other siblings are not included, also theses siblings are active nodes for each other 

since they have an edit distance less than or equal the threshold. When a sibling is the 

current processing node, the generation methods take the unprocessed siblings. 

Using this generation method the PreJoin becomes efficient to find all similar strings, 

either if they are long or short. 

2.3 Pair-wise similarity 

Pair-wise similarity computation is to assign objects to multiple clusters, this may 

produce many redundant pair’s computations because more than one object may share 

many clusters. 

Pair-wise similarity usually works as follows: for each object, regardless of the 

object type, at least one signature is generated, then every signature and objects that are 

identified the cluster are assigned to all clusters with their signatures. The map phase 

emits key and value for every signature (key=signature, value=object).In reduce phase 

the objects which are belong to the same clusters are compared with each other. 

The creation of any signature is hard because you need to balance between the 



220 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

efficiency and the quality of data. To reduce the number of pairs the cluster size must be 

small as possible to increase efficiency. Small cluster size leads to lose some identical 

object pairs, especially in the dirty data. 

The proposed algorithms (Pair-wise) reduces the pairs using MapReduce frame 

work as following: the signature function starts to find all signatures for all objects. In 

map function every object (o) is assigned to its signatures. Reduce function sort and 

checks the key and any pair [o1, σk(o1)], [o2, σk (o2)] even if they are disjoint. If σk(o1) 

ᴖ σk(o2) ≠ Ф this mean it is disjoin then we can conclude as a result that the key (k) is the 

least common signature value and the two objects can be compared, but if σk(o1) ᴖ σk 

(o2)=Ф it is joint so there is a small common signature value ќ<k and the object pair (o1, 

o2) is not considered for k. try to find a single signature by finding the least common 

signature min[σk(o1) ᴖ σk(o2)] so this responsible for the pair computation and the other 

pair larger than miss is discarded. 

The advantages of sorting the list are: the set with small signature will simplify 

the prefix list and makes the comparison that determine if the two sets overlap more 

efficient. 

Sorting the signatures in reduce phase require computing the signature of the 

objects again from their attributes value, this will increase the output from the map phase. 

The signature function will be called for every (key, value) pair, this may make the 

number of the objects is less than the number of calls. 

Least common signature produce skew for the reduce phase because any pair 

shares several signature will be processed only for one signature (the smallest one), so 

other signatures will be considered as redundant signatures. 

2.4 MRSimJoin Algorithm 

MRSimJoin is a multi-round MapReduce based algorithm which is interested in 

the Similarity Joins for cloud systems, it is partitioning and distributing the data until the 

all the subsets are become small enough and then can be processed in a single node, it 

have implemented in Hadoop. We can use MRSimJoin algorithm in many applications 

such as detecting the similar images which are represented as feature vectors, and similar 

publications in a bibliographic database. 



221 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

The input data can be given in one or more distributed files, each file may be 

contain records from R and S sets. Each record consist of the identification of the dataset 

of the record and the identification of the record in the dataset. As we mentioned before, 

MRSimJoin algorithm divides the data into smaller sets until each of these sets is small 

enough to be processed in a single-node, this called Self-Join (SJ) routine. 

There are two type of partitions, Base and Window-pair partitions. Base partition 

include all records that are closer to a given pivot than to any other pivot. Window pair 

partition includes the records which is found between any two base partitions. 

MRSimJoin and Quick Join algorithms are similar in the way of data partitioning, 

but in MRSimJoin algorithm the partitioning of the data, generation of the result links, 

and the storage of intermediate results are performed in a fully distributed and parallel 

way. There are two types of the rounds, base rounds and window-pair rounds. Base 

rounds are the rounds that it is used to determine the similarity links in the input data. 

Window-pair rounds are the Rounds that determine only the links between records which 

are belong to different partitions. In MRSimJoin Routine there is an intermediate 

directory which is used to store the partitions that will be repartitioned many times until 

the each partition become small and can be processed in one node. The executing of the 

two type of the partition (base and window-pair) MapReduce job depend on the type of 

the input directory and each MapReduce executed in four stages. The first stage is the 

Map stage, this stage responsible to divide the input data into multiple parts (chunks) and 

to create map tasks in multiple nodes to process them, the identical map function is called 

once for each input record and create single intermediate record for each base or window- 

pair partition. 

The second stage is the partition stage, this stage is responsible to partition the 

intermediate data which was produced from the map tasks by calling the partition 

function. The third stage is the compare stage, in this stage the intermediate records 

which are refer to the same partition are grouped. 

The last stage is the reduce stage, this stage receives the list of all records of the 

group and then check size of the list , if it can be processed in a single node, then calls the 

single-node SJ routine is called, Otherwise, all the group records are saved in the 



222 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

intermediate directory to be partitioning again. 

2.5 Set- Similarity-Join Algorithm 

Set similarity join identify all pairs of high similar sets. The large amount of pairs 

and sequential computations cause large execution time and more space, so in order to 

solve these problems, three approaches are proposed for set similarity join and perform 

them in parallel using MapReduce framework. 

Parallel set similarity join has three stages: the first stage is to compute data 

statistics for good signature using Token Ordering, the second stage is to group the 

candidate pairs based on signature and to compute the self-similarity join using record 

identifications (RID)-pair generation, and the third stage is to generate the actual pairs of 

joined records called Record Join. 

The first stage creates global ordering of the token pairs in the join column 

depending on their frequency, it uses one MapReduce function. In the Map function it 

computes the join value of each record and tokenize it, then emits each token key with 

the number of occurrences of it. In reduce function itcomputes the frequency for each 

token key and calling the tear-down function to order the tokens in memory instead of 

using a reducer to reduce the I/O access operations. 

After scanning the input data (records), the second stage outputs RIDs pairs that 

are representing the records in which their join-similarity is larger than the threshold, it 

uses one MapReduce cycle. The map function is done with several steps: scan all input 

records, project them on RID and on a join attribute, tokenize them, extract the prefix 

depending on to the global ordering of tokens which are obtained from the previous 

stage, finally route the tokens to a specific reducer. 

The routing strategy is done by Grouped Tokens, that means many tokens can be 

mapped to one key(same key),then each record generate a (key, value) pair to every 

group of the prefix tokens, so the group of tokens are formed by assigning tokens to 

group using Round Robin method. The group will be balanced because one specific 

group contains the sum of frequencies of token, so the replication of data is small. In the 

reducer function every reducer processes one or more groups, in each group the reducer 

find pairs which their join attribute values satisfy the similarity condition (sim (pair)>= 



223 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

threshold). Finding the similarity of the candidates in group is done using Indexed Kernel 

strategy which use PPJoin+ index that match the probe PPJoin index with join attribute 

value of current candidate with a list RIDs which satisfy the similarity condition, then 

adding the current candidate to the PP joined index, this strategy more efficient than 

nested loops. 

In the third stage we note that we have only pairs of RIDs, but we need actual 

record (reset of each record) uses two MapReduce cycles, in the first cycle each half of 

each pair fill the record information, and in the second cycle merge the previously filled 

in records. 

2.6 Trie-join Algorithm 

String similarity join finds similar pairs between two collections of strings. Trie- 

join algorithm used edit distance (ED) which is the minimum number of single character 

edit operations (insertion, deletion, substitution) needed to transform string “r” to the 

corresponding string “s” ,such that edit distance between the strings is less than a given 

edit distance threshold τ. 

There is many algorithm studies string similarity join with edit constrains such as 

Part-Enum, All Pairs-ED and ED-Join, that use a filter and refine framework. in the filter 

stage, they generate signatures for all strings, in refine stage they find the candidate pairs 

and give the final results of high similar pairs, unfortunately these algorithms have 

disadvantages, Firstly, they are inefficient for data sets with small strings (less than 30), 

secondly they cannot support dynamic update of data sets, thirdly they generates large 

index sizes due to the large signature numbers. 

Trie-Join algorithm is efficient for small strings, and developed three pruning 

technique to reduce number of candidate pairs, and they change this algorithm to support 

dynamic update and eliminate computational overhead to get high performance, they use 

a trie structure to index strings to reduce the storage space, since trie share the same 

prefixes for many strings. Trie is a tree where every path form the root to a leaf represent 

a string, and each node produce a character in the string, thus any node in the trie has an 

edit distance constrain less than the threshold is called active node. 



224 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

Some traditional solutions to find similarity is to generate all string pairs and 

compute their edit-distance, but this method is too expensive, in order to solve this 

problem Trie-Join algorithm propose a new technique to reduce the computational 

overhead. 

Subtrie pruning: based on the trie structure many strings with the same prefixes 

share the same ancestor nodes. Thus if we have a string in a trie, and a node is not active 

node for every prefix of the string, then any string under this node cannot be similar this 

string, so we can prune this subtrie, based on this technique they developed Trie-Search 

approach. 

Dual Subtrie pruning: subtrie pruning is just applicable for one set of strings C, 

but actually the second set of strings D, is also share some prefixes, so we can make dual 

pruning for the two sets C, D. if we have a node x is not an active node for every ancestor 

in another node y, and node y is not an active node for every ancestor in node x, the 

strings under node x cannot be similar to any string under node y, so we can prune both 

of subtries. 

Trie-traverse algorithm: since Trie-Search algorithm is applicable for subtrie 

pruning, we need a new algorithm applicable for Dual subtrie pruning, which is called 

Trie-Traverse algorithm, it is generate a trie index for all strings in the trie then it traverse 

the trie in preorder, such that it guarantees computing the parent's active nodes for every 

node before the node itself. Trie-Traverse computes the active nodes for each node in the 

trie, then when reaching a leaf node n, such that the string of the node m is belong to the 

active node of the leaf node, and if the node of the string is a leaf node then the algorithm 

get a similar string pair (n, m). 

Trie-Dynamic algorithm: Trie-Travers algorithm should compute all the active 

nodes in the trie, but actually we don't need to compute all the active nodes of them, 

because of the similarity property, that says if s is an active node of t then t is an active 

node of s, so we can reduce the redundant computational overhead using a new 

algorithm, they called it Trie-Dynamic algorithm. Firstly it inserts an empty trie with only 

a node root, then inserts the strings in the trie. If the prefix of the string is exist it adds a 

leaf node an update the active nodes, otherwise if the prefix doesn't exist it inserts a new 



225 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

node and compute the active nodes for the new one. If s is a new inserted node, and for 

each node r belong to the active nodes of s, then based on symmetry property r is an 

active nod of r, so Trie-Dynamic algorithm update the active nodes of r by inserting node 

s in the active nodes of r. 

TriePathstack algorithm: firstly it construct a trie for all strings, then it traverse 

the trie in preorder, so when TriePathStack visit a new node it generate the active nodes 

for the current node using virtual partial method, and it is parent's active nodes, then it 

pushes the node in the stack, after update the active nodes of the current nod's ancestor 

using the nodes away from the current node in the stack by τ (threshold value), 

TriePathStack check if the current node is a leaf node, then it give the similar string pair 

and pop the node from the stack. TriePathStack continues to repeat the previous steps 

until the stack is empty, thus reduce the storage space resulting from generating the active 

nodes using Trie-Dynamic algorithm. 

Incremental similarity joins: suppose we have got the self-join similarity results of 

a string set R, and a new collection of string is added ΔR, it is difficult to update the self- 

join similarity results, so they proposed a new algorithm called Incremental similarity 

joins, according to this algorithm the update of the string pairs is (sϵΔR, rϵRυΔR), such that 

the edit distance is less than the threshold. 

2.7 The multi-sig-er Method 

 
Entity resolution is the main operation that it is used in data quality management, 

and it is used to find the value of data, in other words it is the process that find non 

identical duplicates and merge the identical duplicates. The problem of entity resolution 

is to eliminate the redundant pairs and minimize the similarity computation but at the 

same time preserving the accuracy of resolution. Because single signature produce a large 

number of objects that sharing the same key, the join computation will have a huge 

workload. To solve the previous mentioned problem, a multi-signature method is 

proposed which is based on signature blocking and parallel resolution method that 

supports both structured and unstructured data. 

Multi-sig-er algorithm is working as following: each object is tagged with multi- 



226 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

signature, the same object which has many signatures can be found in different subsets, 

then using a blocking technique which puts the objects with the same signature in one 

block, this mean that one object which has many signatures may be found in different 

blocks, finally eliminate redundant objects by using transitive property; if we have the 

objects A, B, and C, object A implies object B, and object B implies object C , we can 

conclude by using transitive property that object A implies object C, and we don't need to 

match B and C since the similarity has the transitive property. By using the transitive 

property we can omit many redundant pairs and as a result the candidate pairs will be 

fewer. 

3. Algorithms Comparison and Analyses 

In this section we will analysis the previous similarity join algorithms in 

MapReduce based on some important criteria. Table 3.1 show the result of the algorithms 

comparison. 

 

 

 

3.1 Preprocessing 

 
It is a technique to make the input data easy to distribute and give an overview of 

the data. It needs a new stage of MapReduce so it will add new computation to the 

algorithm. 

Set-similarity join algorithm preprocess the data using global token ordering, it 

scans the data and extract tokens, then compute the frequency of each token, then sort 

them based on frequencies, this will increase the performance. 

Trie-based and pre-join algorithms are using tree data structure to organize the 

data, each string starting from the root to a leaf, and the intermediate nodes represent 

characters that are shared between more than one string, this structure reduce the space 

and make it easier to process the data. 

SSJ_R and SSJ-R2 extract the terms of each object, and compute the frequency of 

each term, then sort the frequencies, the most frequent terms are discarded, this reduce 

the length of the inverted terms, for sure this reduce the number of candidate pairs, that 



227 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

will be generated from these terms. 

3.2 Pre-filtering 

It is a technique to eliminate some data that is not important to the join result, 

since the join an expensive operation to the space and the time, they try to reduce the 

input data to this operation. 

3.3 Partitioning 

It is a technique that divide the input data to multiple partitions to reduce the 

tasks, but this technique may generate redundant data. 

Set-similarity join partition the data based on hash technique. For every record it 

extracts record ID (RID) and the join attribute value, then hash records to the 

corresponding candidate bucket, and every bucket goes to a reducer. 
 

SSJ-R does not make partitioning, SSJ-2R partition the reminder file that contains 

the pruned part of the object to K (user defined variable) parts, since increasing the 

collection size will increase the reminder file, and since the reminder file is loaded in 

every node; we need to decrease its size by partition the reminder file for (K) chunks, so 

every reducer just need to load one chunk in the memory. 

3.4 Replication 

This stage is used to reduce the amount of data replication to reduce tasks that 

may result from partition stage. 

Set-similarity join algorithm uses grouping technique that distribute all pairs 

which share at least one prefix, so all pairs with one prefix goes to one reducer, this 

guarantees pairs of record that has no chance of being similar will never go to the same 

reducer, so it will achieve high similarity of candidates. But grouping technique may 

cause multiple checks for the same record in more than one reducer, thus increase the 

redundant work.SSJ-2 does not has replication pairs, because of bucketing technique. 

SSJ-2R has a replication, each document is replicated K times, because each part 

goes to one reducer, in order to retrieve the full content of the pruned document to 

compute the similarity. 



228 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

Trie-based algorithm generates the active nodes then applying some Pruning 

techniques (Length Pruning, Single-branch Pruning, Count Pruning) to eliminate some 

the redundant pairs, but PreJoin algorithm applies Pruning during generating the active 

nodes to eliminate the redundant active node, so PreJoin algorithm is more efficient than 

Trie-based algorithm. 

3.5 Load Balancing 
 

Check if the tasks are distributing among the reducers with fairness way. Set- 

similarity join algorithm distribute candidates to the right reducers to minimize reducers’ 

workload, using grouping technique. SSJ-2 and SSJ-2R uses bucketing technique, during 

the indexing phase it randomly hash the lists to different buckets, and every bucket goes 

to one mapper. 

3.6 Cycles of MapReduce 

How many MapReduce stages are needed using an algorithm, of course if it is one 

stage it is ideal, but almost all algorithms cannot make one cycle. 

Set similarity join uses four MapReduce cycles, the first cycle computes the 

global tokens, the second cycle groups the prefixes, and the third cycle retrieves the 

remaining information of each record, since the last phase receive part (RID, attribute 

join value) of the record. 

3.7 Sorting the terms 

When extracting the terms of all objects, we will have signatures for them that 

will be used by the next tasks, if the terms are sorted it will facilitate the next tasks, so 

sorting How many MapReduce stages are needed using an algorithm, of course if it is one 

stage it is ideal, but almost all algorithms cannot make one cycle. guarantees the search 

time will be smaller. 

SSJ-2R sorted the indexed list that makes the comparison between two overlap 

sets more efficient. And the same thing for SSJ-2. Set-join algorithm sorts the global 

frequencies. 

3.8 Additional Remote I/O operation 

After creating the signatures some algorithm just take these signatures to the next 



229 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

MapReduce cycle to determine the keys of the objects. At the similarity calculation 

between two objects we need all the information of the object, so the map function must 

go to the distributed file system (DFS) to get the full object, thus cause an additional I/O. 

Since the reducer in SSJ-2 does not receive enough information to compute the 

similarity, so it must go to the distributed file system to get the two documents, thus 

generate two remote I/O operation. 

Set-similarity join algorithm bring the rest of each record using the RIDs that are 

generated in the previous stage, firstly it fills in the record information each half of each 

pair that contain a part of the record, then it brings together the previously filled in 

records. Thus avoid going to DFS. 

SSJ-2R bring the rest of each document using the reminder file, and through 

MapReduce framework, so it does not go to DFS. 

3.9 Computational Overhead 

Redundant pairs cause an overhead since these computation are repeated many 

times, so it is better to eliminate this redundancy. 

Set-similarity join algorithm has redundant computations, because after grouping 

stage some pairs goes to more than one reducer, so the similarity computation redundant 

in many reducer .SSJ-2 computes the similarity for every pair just once, because of 

applying bucketing technique, so no computational overhead. The same thing for SSJ- 

2R.Trie-based algorithm has a computational overhead since it have redundant active 

nodes. Pre-join algorithm has no computational overhead, because it generates the active 

node and its siblings, so there is no need to compute the active nodes for the siblings 

again. Pre-join algorithm use order traverse which guarantees the visited siblings will not 

be visited again, so if the sibling node is the current processed node its siblings that are 

already visited will not be visited again, by this way the computational overhead is 

reduced. 



230 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

 

Table 3.1 
 

Appro 

ach 

Pre- 

process 

ing 

Pre- 

filteri 

ng 

Partitin 

g 

Replicat 

ion 

Load 

Balanc 

ing 

Number 

of Cycle 

of   

MapRed 

uce 

Sorti 

ng 

the 

Ter 

ms 

Additio 

nal 

Remote 

I/O 

Operati 

on 

Computati 

onal 

Overhead 

Set 

Similar 

ity Join 

Global 

Token 

Orderin 

g 

No Hash- 

Based 

Groupin 

g 

Yes 4 Yes No Yes 

SSJ-2 Global 

Frequen 

cy 

No Hash- 

Based 

No Yes 3 Yes 2 No 

SSJ-2R Global 

Frequen 

cy 

No Reminde 

r file to 

chunks 

Yes Yes 4 Yes No Yes 

Trie- 

Based 

Trie 

Structur 

e 

No No No No N/A No No Yes 

Pre- 

Join 

Trie 

Structur 

e 

No No Novel 

Active 

Node 

Generati 

on 

Method 

 

 

No 

 

 

N/A 

 

 

No 

 

 

No 

 

 

No 

MRSi 

m Join 
No No 

Intermed 

iate files 
No Yes N/A Yes No No 



231 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

 

5. Conclusion and Future Work 

 
The similarity join algorithms are the algorithms which are used to find the 

similarity between two objects who’s their distance is smaller than a predefined 

threshold. In this survey we discussed some similarity join algorithm based on 

MapReduce, then we compared these algorithms (Set-Similarity join, SSJ-2R, 

MRSimJoin, Trie-based, PreJoin) according to some criteria that investigate the 

enhancement for each algorithm. We can infer from our compression that SSJ-2R is 

better than SSJ-2 because it has not additional I/O, in the other hand SSJ-2R has a 

computational overhead because it partition the reminder file. PreJoin algorithm is better 

than Trie-based algorithm because it eliminates the computational overhead by reducing 

the generated active node. Set- similarity join algorithm still has computational overhead 

after grouping technique, because same records might be checked for similarity in 

multiple reducers, but the quality for measuring the similarity is high, because the 

grouping technique guarantees that pairs of records which have no chance of being 

similar are never go to the same reducer. MRSimJoin algorithm partition the data until it 

can be processed on a single node, it maps the data into mappers with load balancing 

property which will improve the performance. 

In future we will explain other similarity join algorithm, such as Fuzzy join, V- 

SMART-Join, Silva et al, and Top-k similarity join. 

 
References 

Baraglia, R., Morales, G. D. F., & Lucchese, C. (2010, December). Document similarity 

self-join with MapReduce. In 2010 IEEE International Conference on Data 

Mining (pp. 731-736). IEEE. 



232 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

Gouda, K, & Rashad M (2012, May). Prejoin: An efficient trie-based string similarity 

join algorithm. In Informatics and Systems (INFOS), 2012 8th International 

Conference on (pp. DE-37). IEEE. 

Kolb, L., Thor, A., & Rahm, E. (2013, June). Don't match twice: redundancy-free 

similarity computation with MapReduce. In Proceedings of the Second Workshop 

on Data Analytics in the Cloud (pp. 1-5). ACM. 

Pang, J., Gu, Y., Xu, J., Bao, Y., & Yu, G. (2014, June). Efficient Graph Similarity Join 

with Scalable Prefix-Filtering Using MapReduce. In International Conference 

on Web- Age Information Management (pp. 415-418). Springer International 

Publishing. 

Silva, Y. N., & Reed, J. M. (2012, May). Exploiting MapReduce-based similarity joins. 

In Proceedings of the 2012 ACM SIGMOD International Conference on 

Management of Data (pp. 693-696). ACM. 

Silva, Y. N., Reed, J. M., & Tsosie, L. M. (2012, August). MapReduce-based similarity 

join for metric spaces. In Proceedings of the 1st International Workshop on Cloud 

Intelligence (p. 3). ACM. 

Vernica, R., Carey, M. J., & Li, C. (2010, June). Efficient parallel set-similarity joins 

using MapReduce. In Proceedings of the 2010 ACM SIGMOD International 

Conference on Management of data (pp. 495-506). ACM. 

Wang, J., Feng, J., & Li, G. (2010). Trie-join: Efficient trie-based string similarity joins 

with edit-distance constraints. Proceedings of the VLDB Endowment, 3(1-2), 1219- 



233 

MATTER: International Journal of Science and Technology                    
ISSN 2454-5880 

  

1230. 

Yan, C., Song, Y., Wang, J., & Guo, W. (2015, May). Eliminating the Redundancy in 

MapReduce-based Entity Resolution. In Cluster, Cloud and Grid Computing 

(CCGrid), 2015 15th IEEE/ACM International Symposium on (pp. 1233-1236). 

IEEE. 


