

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 200

Al-Badarneh et al., 2016

Volume 2 Issue 1, pp. 200-213

Date of Publication: 19th December, 2016

DOI- https://dx.doi.org/10.20319/mijst.2016.s21.200213

This paper can be cited as: Al-Badarneh, A., Al-Rudaini, M., Ali, F., & Najadat, H. (2016). Index-Based

Join in Mapreduce using Hadoop Mapfiles. MATTER: International Journal of Science and Technology,

2(1), 200-213.

This work is licensed under the Creative Commons Attribution-Non Commercial 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

INDEX-BASED JOIN IN MAPREDUCE USING HADOOP

MAPFILES

Amer Al-Badarneh

Jordan University of Science and Technology, Irbid, Jordan

 amerb@just.edu.jo

Mohammed Al-Rudaini

Jordan University of Science and Technology, Irbid, Jordan

 maalrudaini15@cit.just.edu.jo

Faisal Ali

Jordan University of Science and Technology, Irbid, Jordan

 faali14@cit.just.edu.jo

Hassan Najadat

Jordan University of Science and Technology, Irbid, Jordan

najadat@just.edu.jo

Abstract

Map Reduce stays an important method that deals with semi-structured or unstructured big data

files, however, querying data mostly needs a Join procedure to accumulate the desired result

from multiple huge files. Indexing in other hand, remains the best way to ease the access to a

specific record(s) in a timely manner. In this paper the authors are investigating the

performance gain by implementing Map File indexing and Join algorithms together.

amerb@just.edu.jo
maalrudaini15@cit.just.edu.jo
faali14@cit.just.edu.jo
najadat@just.edu.jo

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 201

Keywords

Hadoop, BigData, MapReduce, Join Algorithms, Indexing.

1. Introduction

The increased popularity of using social networks and smart devices led to the age of big

data where huge amount of shared multi-type data, stored as un-relational unstructured or semi-

structured data files, the term “big data” corresponds to exceptionally large amount of data that

cannot be handled by any database suits.

Apache Hadoop (Apache™ Hadoop®, n.d.): an open-source parallel and distributed

framework for storing and processing extremely large datasets (big data) within all Hadoop

cluster nodes using wide range of programming modules which included in the Hadoop

Libraries, the Hadoop framework also detect and fix application runtime errors overall cluster

nodes.

Hadoop framework (Apache™ Hadoop®, n.d.) includes the following modules:

 Hadoop Common: common libraries that support the other Hadoop components.

 Hadoop Distributed File System (HDFS): distributed file system offering high-speed

access to huge data files.

 Hadoop YARN: framework for scheduling tasks, and managing cluster resources.

 Hadoop MapReduce: YARN-based system for large Datasets parallel processing.

Hadoop MapReduce: a software framework to aid the development of parallel and

distributed processing projects working on an extremely big amounts of data on huge clusters in

a reliable, fault-tolerant scheme.

HBase (Khetrapal & Ganesh, 2006) (Prasad & Agarwal, 2016): is an Apache open source

Hadoop project which works as a parallel and distributed storage to host big data tables where

data is logically structured as files, records, and attributes that may have multiple types for the

same record key.

The Map File object (Khetrapal & Ganesh, 2006) (Prasad & Agarwal, 2016) (Class

MapFile, n.d.) (Hadoop I/O: Sequence, Map, Set, Array, BloomMap Files, 2011) is a HDFS

directory encloses two sequence files (Data, Index), created from the original file.

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 202

The Data file has all the key and value records, however, all keys stored in a sorted

manner, in fact, the append operation check for this condition, in addition, the task scheduler can

request the read of data file blocks into memory as necessary.

The Index file has a key and a value which holds the starting byte address of the data file

block in the HDFS, in other words, the index file doesn’t enclose all the data file keys, except

only a less portion of the keys, similarly, the task scheduler requests the read of the entire index

file into the local memory of each map node.

1.1 Join Algorithms

1.1.1 Reduce Side Join (Pigul, 2012)

It is the phase in which data pre-processing done, the supreme general algorithm, with no

restriction on data, it contains two phases, the first phase passes the data through network from

one phase to another, and passing the information concerning data sources over the network

nodes, hence, for these two factors, it is the greatest time consuming algorithm.

In this algorithm, the core improvement is to reduce the data transfer as much as possible,

hence, there are three algorithms in this category:

 General Reduce-Side Join.

 Optimized Reduce-Side Join.

 Hybrid Hadoop Join.

1.1.1.1 General Reducer-Side Join (Pigul, 2012)

Also known as GRSJ its pseudo code shown in Figure 1 this algorithm has two phases,

Map and Reduce, in Map Phase date read from sources and tagged with the source value.

The Reduce Phase joins the data tagged with the same key, although with different tags,

which in fact, stays a problem as the reducer should have enough memory for all the records with

the same key.

1.1.1.2 Optimized Reducer-Side Join (Pigul, 2012)

An improvement over the past algorithm by overriding sorting and key grouping, also

known as ORSJ, its pseudo code shown in Figure 2, in this algorithm the value of first tag

followed by the second tag, which only needs buffering for one input set as splitting remains on

the key only, in addition to the attached key.

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 203

1.1.1.3 The Hybrid Hadoop Join (Pigul, 2012)

This algorithm combines Map-Side and Reduce-Side, its pseudo code demonstrated in

Figure 3, this algorithm processes only one of the sets, the second set is pre-partitioned in the

Map Phase, next, in the Reduce Phase joins the Datasets which came from the Map Phase.

The restriction of this algorithm, is splitting one set in advanced, and similar to Reduce-

Side Join it requires two phases for preprocessing, and one phase for the Join, in fact, this

algorithm need no information regarding the data source since they came in the Reduce Phase.

Figure 1: General Reducer-Side Join (Pigul,

2012)

Figure 2: Optimized Reducer-Side Join

(Pigul, 2012)

Figure 3: Hybrid Hadoop Join (Pigul, 2012)

1.1.2 Map Side Join (Pigul, 2012)

This algorithm doesn’t manage the Reduce Phase, in fact, the Join job consists of two

jobs, the partition Join, and in-memory Join.

The first job is responsible for partitioning the data into the same number pieces, where

the second job is responsible for sending all smaller Datasets to all Mappers, after that,

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 204

partitioning the bigger Datasets to all Mappers, in fact, this type of Join has a problem when the

partitioned sets remain bigger than the memory, and hence, can’t fit in.

To solve this, there are three algorithms to prevent this problem:

 JDBM Map Join.

 Multi-Phase Map Join.

 Reversed Map Join.

Map-Side Partition Join Algorithm (Pigul, 2012) makes an assumption that the two

Datasets are pre-partitioned into the same number, its pseudo code in Figure 4.

The improvement of this algorithm is the Map-Side Partition Merge, its pseudo code in

Figure 5, which apply Merge Join to the partitions using the same ordering, in addition, it reads

the second set on-demand and it’s not read completely, which avoids memory overflow.

Figure 4: Map-Side Partition Join (Pigul,

2012)

Figure 5: Map-Side Partition Merge Join

(Pigul, 2012)

1.1.3 Semi-Join (Pigul, 2012)

Based on the fact that the Join process is not using all of the Dataset tuples, hence,

deleting these tuples reduces the data transfer rate over the network, also reduces the Joined

Datasets size, that what semi Join dose by filtering the data.

There are three ways to implement the semi-Join (Pigul, 2012):

 Bloom Filter Semi-Join.

 Selective Semi-Join.

 Adaptive Semi-Join.

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 205

1.1.3.1 Bloom-Filter (Pigul, 2012)

A bitmap of the elements in the set, which also defined by the set, in fact, it may contain

false positives but non false negatives, in addition, the bitmap has a fixed size of M.

The semi-Join has two jobs, the first one consists of the Map Phase which handles the

designation and addition of keys from one set to the bloom filter, after that, the Reduce Phase

combines many bloom filters from the first phase into one bloom filter.

The second job only consists of the Map Phase, in which filters the second data set with

the first job Bloom-filter, as the fact that enhancing accuracy by increasing the scope of the

bitmap, however, a bigger bitmaps cost additional memory.

The bloom filter pseudo code is displayed in Figure 6.

Figure 6: Bloom-Filter (Pigul, 2012)

1.1.3.2 Selective Semi-Join (Pigul, 2012)

Select unique key and build a hash table, the semi-Join performs 2 jobs the first phase in

which a unique key will be selected in the Map Phase, the second job contains only Map Phase,

which filters the second set, the hash table may be extremely large depending on the key size, its

pseudo code shown in Figure 7.

1.1.3.3 The Adaptive Semi Join (Pigul, 2012)

Performs one job and invoking filtering in the Join similar to Reduce-Side Join Map

Phase the key from two Datasets and in the Reduce Phase a key with different tags selected, the

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 206

disadvantage of this way is the large Dataset information transmission across the network, it’s

pseudo code explained in Figure 8.

Figure 7: Simi-Join with Selection (Pigul,

2012)

Figure 8: The Adaptive Semi Join (Pigul,

2012)

1.1.4 Range Practitioners (Pigul, 2012)

All the algorithms except in-memory Join have issues with the data skew, the methods of

the default hash Partitioner replacement are:

 Simple Range-Based Partitioner.

 Virtual Processor Partitioner.

Simple Range-Based Partitioner: builds the vector from the original set of keys, and set

of numbers randomly chosen, later, a node is selected arbitrarily in the situation of data on which

to construct a hash table, else, the key will send to all nodes.

Virtual Processor Partitioner (Pigul, 2012): based on increasing the number of partitions.

The number of divisions specifies multiple task numbers, after that, the same keys are scattered

through extra nodes than in the previous algorithm, Figure 9 shows the pseudo code for it.

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 207

Figure 9: The Range Partitioners. (Pigul, 2012)

2. RELATED WORK

A. Pigul (Pigul, 2012) did a great comparative study on parallel processing Join

algorithms and their enhancements, the comparison is shown in Figure 10 and Figure 11 shows

the execution time comparison between the experimented algorithms in the study.

The Authors of this article choose the work of A. Pigul (Pigul, 2012)as basis for selecting

and using the algorithms.

M. H. Khafagy (Khafagy, 2015) applied an index Join algorithm with a various size large

Datasets (up to 500 million records) that shows a better performance regardless of the size of the

Datasets, without mentioning the technique operated in creating the index and applies only

experimental results to prove the performance of the proposed algorithm.

Wen L. et.al. (Liu, Shen, & Wang, 2016) introduced a similarity Join in MapReduce with

the help of a proposed similarity Join tree (SJT) as an index, SJT partitions the data file on the

underlying data distribution, and put similar records to the same partitions.

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 208

Figure 10: Phases executions time of various algorithms. Size 10
4
*10

5
(Pigul, 2012)

Figure 11: Phases executions time of various algorithms. Size 10
6
*10

6
 (Pigul, 2012)

3. Proposed Method

The proposed idea in this paper is to integrate data file indexing using Hadoop HBase

MapFiles with map-side join algorithm, providing both mathematical and experimental results.

MapFile Index-Based Join Algorithm (MFIJ).

The main idea of using Hadoop MapFile is not only to reduce the HDFS access

operations, as the both index and data file blocks is transferred into memory, depending on

requested data for each map node, leading to a faster memory side processing.

The transferred blocks of the data file are CPU-Memory accessed to invoke key search,

records join, and then write them into output file in HDFS storage, as described in the MFIJ

pseudo code in Figure 12, in addition, the creation of MapFile could be for one, multiple, or all

datasets used in the join operation depending on the needed query.

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 209

Figure 12: MapFile Index-Based Join.

3.1 Mathematical Comparison

Hadoop MapReduce splits the work load on multiple nodes (N) in which the overall

complexity of accessing a big data file will be improved, assuming that using two files (FS, FR)

in the join operation, each with (S, R) records respectively, and (S<R). The Reduce-Side Join

(RSJ) cost will be:

𝑅𝑆𝐽𝑐𝑜𝑠𝑡 = ((𝑁 + 1) ×
𝑆

𝑁
×
𝑅

2
× (

𝑙𝑜𝑔2𝑅

2
))

Where, (S/N) is the amount of records from file (S) in each map task, (R/2) is the average

number of joined record instances from file (R) for each record in file (S), (1) is a representation

of the parallel records search and read operations in the map phase while, (N) is the number of

join-write operations in the reduce phase, finally, the ((log2 R)/2) is average binary search cost

for a record in file (R). The Map-Side Join (MSJ) cost is as follows:

𝑀𝑆𝐽𝑐𝑜𝑠𝑡 = (
𝑆

𝑁
×
𝑅

2
× (

𝑙𝑜𝑔2𝑅

2
)) + (

𝑆

2
)

Where, (S/2) is the average write operations in the reduce phase, the deferent issue here is

that (N) join operations in the reduce phase are replaced by (S/2) normal, average write

operations, as mapping takes the responsibility of doing all the read and join operations.

In the proposed MapFile Index-Based Join (MFIJ) the (R) file conversion to a MapFile

with a data file of (D=R) records, and an index file of (I) records, each addressing a block of the

data file containing (D/I) records. The MapFile Index-Based Join cost will be:

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 210

𝑀𝐹𝐼𝐽𝑐𝑜𝑠𝑡 = (
𝑆

𝑁
×
𝐷

2
× (

𝑙𝑜𝑔2𝐼

2
+
𝑙𝑜𝑔2

𝐷
𝐼⁄

2
)) + (

𝑆

2
) + (

𝑁𝐷

2
) + 𝑁𝐼

Where, (ND/2, NI) are the average read cost of both data and index files respectively into

the memory.

For the first look into MFIJ cost, it appears that it could be more than both RSJ and MSJ

costs, in fact, it is less if you know that both index file and data file blocks are cached into

memory, reducing a large amount of HDFS data storage access operations, and hence, faster join

operations, with more memory processing operations.

3.2 Experiment and Results

The environment used for the experiment is Apache™ Hadoop® Version 2.5.2

(Apache™ Hadoop®, n.d.), on Cloudera© QuickStart® CDH Version 5.5 (Cloudera.com, 2016),

a single node with 1 CPU, 100% execution capacity, and 4GB RAM, over Oracle© VM

VirtualBox® Version 5.0.16 platform (Oracle© VM VirtualBox® V 5.0.16," , 2016), installed

over a Microsoft© Windows® 10 Pro 64-bit (10.0, Build 10586) (Microsoft Windows 10 Pro,

2015) with Intel® Core™ 2 Duo CPU P8400 2.26 GHz, and 8GB RAM memory.

The code used is inspired by work of S. Asad Articles in the CodeProject© Website

(Asad, 2015) (Asad S. , 2015), which address the same proposed methodology, using Adventure

Works 2012 OLTP Script Dataset from Microsoft© SQL Server® Database Product Samples

(Adventure Works for SQL Server 2012, 2012).

The experiment is based on comparing the performance of three join programs based on

RSJ, MSJ, and MFIJ join algorithms, over the Hadoop MapReduce environment. The creation of

the MapFile to be used in MFIJ program is done for only one time by a forth separate program

which creates the MapFile of the second dataset file and store it in the HDFS storage, however,

the cost of the MapFile Creation is also calculated in the results.

Each join program is executed 30 times to ensure the average value of performance

which leads to best comparison, the metrics collected are the CPU execution time, and the run

time for each 30 run instances, in each program.

The CPU execution time result that MFIJ algorithm has the most CPU usage which is

approximately 18%, and 19% more than RSJ, and MSJ respectively, as a result of the higher

number of CPU-to-memory operations, while, RSJ, and MSJ has less CPU time usage, as

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 211

illustrated in Figure 13. The result of average run time shown in Figure 14, prove that MFIJ has

better performance than RSJ, and MSJ, by approximately 38%, and 34% less average run time

than RSJ, and MSJ algorithms respectively

Figure 13: Average CPU Time (ms).

Figure 14: Average Run Time (Min:Sec).

4. Conclusion and Future Work

The real performance improvement in this algorithm is using more CPU-Memory

operations to accelerate the overall join operations. As proved by the experiment results

displayed in this paper, the using of Hadoop MapFiles improved the join in Hadoop MapReduce

environment, the authors of this paper encourage the usage of MapFiles as actual datasets rather

than a transformation of dataset, for both static and live-stream big data datasets. For live-stream

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 212

datasets, an automated MapFile storage tool could be useful to collect live-stream data and

directly store it as MapFiles inside the Hadoop HDFS storage system.

The authors of this paper are planning to continue the investigation of the effect on

performance by implementing MapFiles in one or more different MapReduce based join

algorithms like Self-Join and Multi-Join Algorithms.

REFERENCES

Adventure Works for SQL Server 2012. (2012, 3 12). Retrieved from

http://msftdbprodsamples.codeplex.com/releases/view/55330

Apache™ Hadoop®. (n.d.). Retrieved from http://hadoop.apache.org/

Asad, S. (2015, Jan 29). Implementing Joins in Hadoop Map-Reduce. Retrieved from

http://www.codeproject.com/Articles/869383/Implementing-Join-in-Hadoop-Map-Reduce

Asad, S. (2015, 3 16). Implementing Joins in Hadoop Map-Reduce using MapFiles. Retrieved

from http://www.codeproject.com/Articles/887028/Implementing-Joins-in-Hadoop-Map-

Reduce-using-MapF

Class MapFile. (n.d.). Retrieved from

https://hadoop.apache.org/docs/r2.6.2/api/org/apache/hadoop/io/MapFile.html

Cloudera.com. (2016). Retrieved from QuickStart Downloads for CDH 5.5:

http://www.cloudera.com/downloads/quickstart_vms/5-5.html

Hadoop I/O: Sequence, Map, Set, Array, BloomMap Files. (2011). Retrieved from

http://blog.cloudera.com/blog/2011/01/hadoop-io-sequence-map-set-array-bloommap-

files/

Khafagy, M. H. (2015). Indexed Map-Reduce Join Algorithm. International Journal of Scientific

& Engineering Research, 6(5), 705-711.

Khetrapal, A., & Ganesh, V. (2006). HBase and Hypertable for large scale distributed storage

systems. Dept. of Computer Science, Purdue University, 22-28.

Liu, W., Shen, Y., & Wang, P. (2016). An efficient MapReduce algorithm for similarity join in

metric spaces. The Journal of Supercomputing, 72(3), 1179-1200.

Microsoft Windows 10 Pro. (2015). Retrieved from https://www.microsoft.com/en-

us/windows/features.

MATTER: International Journal of Science and Technology
ISSN 2454-5880

 213

Oracle© VM VirtualBox® V 5.0.16,”. (2016, 3 4). Retrieved from Oracle:

https://www.virtualbox.org

Pigul, A. (2012). Comparative Study Parallel Join Algorithms for MapReduce environment.

Труды Института системного программирования РАН, 23.

Prasad, B. R., & Agarwal, S. (2016). Comparative Study of Big Data Computing and Storage

Tools.

Zhang, C., Li, J., & Wu, L. (2013). Optimizing Theta-Joins in a MapReduce Environment.

International Journal of Database Theory and Application, 6(4), 91-107.

