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Abstract  

Map Reduce stays an important method that deals with semi-structured or unstructured big data 

files, however, querying data mostly needs a Join procedure to accumulate the desired result 

from multiple huge files. Indexing in other hand, remains the best way to ease the access to a 

specific record(s) in a timely manner. In this paper the authors are investigating the 

performance gain by implementing Map File indexing and Join algorithms together. 
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1. Introduction  

The increased popularity of using social networks and smart devices led to the age of big 

data where huge amount of shared multi-type data, stored as un-relational unstructured or semi-

structured data files, the term “big data” corresponds to exceptionally large amount of data that 

cannot be handled by any database suits.  

Apache Hadoop (Apache™ Hadoop®, n.d.): an open-source parallel and distributed 

framework for storing and processing extremely large datasets (big data) within all Hadoop 

cluster nodes using wide range of programming modules which included in the Hadoop 

Libraries, the Hadoop framework also detect and fix application runtime errors overall cluster 

nodes.  

Hadoop framework (Apache™ Hadoop®, n.d.) includes the following modules: 

 Hadoop Common: common libraries that support the other Hadoop components. 

 Hadoop Distributed File System (HDFS): distributed file system offering high-speed 

access to huge data files. 

 Hadoop YARN: framework for scheduling tasks, and managing cluster resources. 

 Hadoop MapReduce: YARN-based system for large Datasets parallel processing. 

Hadoop MapReduce: a software framework to aid the development of parallel and 

distributed processing projects working on an extremely big amounts of data on huge clusters in 

a reliable, fault-tolerant scheme.   

HBase (Khetrapal & Ganesh, 2006) (Prasad & Agarwal, 2016): is an Apache open source 

Hadoop project which works as a parallel and distributed storage to host big data tables where 

data is logically structured as files, records, and attributes that may have multiple types for the 

same record key.  

The Map File object (Khetrapal & Ganesh, 2006) (Prasad & Agarwal, 2016) (Class 

MapFile, n.d.) (Hadoop I/O: Sequence, Map, Set, Array, BloomMap Files, 2011) is a HDFS 

directory encloses two sequence files (Data, Index), created from the original file. 
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The Data file has all the key and value records, however, all keys stored in a sorted 

manner, in fact, the append operation check for this condition, in addition, the task scheduler can 

request the read of data file blocks into memory as necessary. 

The Index file has a key and a value which holds the starting byte address of the data file 

block in the HDFS, in other words, the index file doesn’t enclose all the data file keys, except 

only a less portion of the keys, similarly, the task scheduler requests the read of the entire index 

file into the local memory of each map node. 

1.1 Join Algorithms 

1.1.1 Reduce Side Join (Pigul, 2012) 

It is the phase in which data pre-processing done, the supreme general algorithm, with no 

restriction on data, it contains two phases, the first phase passes the data through network from 

one phase to another, and passing the information concerning data sources over the network 

nodes, hence, for these two factors, it is the greatest time consuming algorithm.  

In this algorithm, the core improvement is to reduce the data transfer as much as possible, 

hence, there are three algorithms in this category: 

 General Reduce-Side Join. 

 Optimized Reduce-Side Join. 

 Hybrid Hadoop Join. 

1.1.1.1 General Reducer-Side Join (Pigul, 2012) 

Also known as GRSJ its pseudo code shown in Figure 1 this algorithm has two phases, 

Map and Reduce, in Map Phase date read from sources and tagged with the source value.  

The Reduce Phase joins the data tagged with the same key, although with different tags, 

which in fact, stays a problem as the reducer should have enough memory for all the records with 

the same key.  

1.1.1.2 Optimized Reducer-Side Join (Pigul, 2012) 

An improvement over the past algorithm by overriding sorting and key grouping, also 

known as ORSJ, its pseudo code shown in Figure 2, in this algorithm the value of first tag 

followed by the second tag, which only needs buffering for one input set as splitting remains on 

the key only, in addition to the attached key.  
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1.1.1.3 The Hybrid Hadoop Join (Pigul, 2012) 

This algorithm combines Map-Side and Reduce-Side, its pseudo code demonstrated in 

Figure 3, this algorithm processes only one of the sets, the second set is pre-partitioned in the 

Map Phase, next, in the Reduce Phase joins the Datasets which came from the Map Phase.  

The restriction of this algorithm, is splitting one set in advanced, and similar to Reduce-

Side Join it requires two phases for preprocessing, and one phase for the Join, in fact, this 

algorithm need no information regarding the data source since they came in the Reduce Phase.  

 

Figure 1: General Reducer-Side Join (Pigul, 

2012) 

 

Figure 2: Optimized Reducer-Side Join 

(Pigul, 2012) 

 

Figure 3: Hybrid Hadoop Join (Pigul, 2012) 

 

 

 

 

1.1.2 Map Side Join (Pigul, 2012) 

This algorithm doesn’t manage the Reduce Phase, in fact, the Join job consists of two 

jobs, the partition Join, and in-memory Join.  

The first job is responsible for partitioning the data into the same number pieces, where 

the second job is responsible for sending all smaller Datasets to all Mappers, after that, 
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partitioning the bigger Datasets to all Mappers, in fact, this type of Join has a problem when the 

partitioned sets remain bigger than the memory, and hence, can’t fit in.  

To solve this, there are three algorithms to prevent this problem: 

 JDBM Map Join. 

 Multi-Phase Map Join. 

 Reversed Map Join. 

Map-Side Partition Join Algorithm (Pigul, 2012) makes an assumption that the two 

Datasets are pre-partitioned into the same number, its pseudo code in Figure 4. 

The improvement of this algorithm is the Map-Side Partition Merge, its pseudo code in 

Figure 5, which apply Merge Join to the partitions using the same ordering, in addition, it reads 

the second set on-demand and it’s not read completely, which avoids memory overflow. 

 

Figure 4: Map-Side Partition Join (Pigul, 

2012)  

Figure 5: Map-Side Partition Merge Join 

(Pigul, 2012)

 

1.1.3 Semi-Join (Pigul, 2012) 

Based on the fact that the Join process is not using all of the Dataset tuples, hence, 

deleting these tuples reduces the data transfer rate over the network, also reduces the Joined 

Datasets size, that what semi Join dose by filtering the data. 

There are three ways to implement the semi-Join (Pigul, 2012): 

 Bloom Filter Semi-Join. 

 Selective Semi-Join. 

 Adaptive Semi-Join. 
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1.1.3.1 Bloom-Filter (Pigul, 2012) 

A bitmap of the elements in the set, which also defined by the set, in fact, it may contain 

false positives but non false negatives, in addition, the bitmap has a fixed size of M.  

The semi-Join has two jobs, the first one consists of the Map Phase which handles the 

designation and addition of keys from one set to the bloom filter, after that, the Reduce Phase 

combines many bloom filters from the first phase into one bloom filter.  

The second job only consists of the Map Phase, in which filters the second data set with 

the first job Bloom-filter, as the fact that enhancing accuracy by increasing the scope of the 

bitmap, however, a bigger bitmaps cost additional memory.  

The bloom filter pseudo code is displayed in Figure 6. 

 

Figure 6: Bloom-Filter (Pigul, 2012) 

1.1.3.2 Selective Semi-Join (Pigul, 2012) 

Select unique key and build a hash table, the semi-Join performs 2 jobs the first phase in 

which a unique key will be selected in the Map Phase, the second job contains only Map Phase, 

which filters the second set, the hash table may be extremely large depending on the key size, its 

pseudo code shown in Figure 7.   

1.1.3.3 The Adaptive Semi Join (Pigul, 2012) 

Performs one job and invoking filtering in the Join similar to Reduce-Side Join Map 

Phase the key from two Datasets and in the Reduce Phase a key with different tags selected, the 
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disadvantage of this way is the large Dataset information transmission across the network, it’s 

pseudo code explained in Figure 8. 

 

Figure 7: Simi-Join with Selection (Pigul, 

2012) 

 

Figure 8: The Adaptive Semi Join (Pigul, 

2012) 

 

1.1.4 Range Practitioners (Pigul, 2012) 

All the algorithms except in-memory Join have issues with the data skew, the methods of 

the default hash Partitioner replacement are: 

 Simple Range-Based Partitioner. 

 Virtual Processor Partitioner. 

Simple Range-Based Partitioner: builds the vector from the original set of keys, and set 

of numbers randomly chosen, later, a node is selected arbitrarily in the situation of data on which 

to construct a hash table, else, the key will send to all nodes. 

Virtual Processor Partitioner (Pigul, 2012): based on increasing the number of partitions. 

The number of divisions specifies multiple task numbers, after that, the same keys are scattered 

through extra nodes than in the previous algorithm, Figure 9 shows the pseudo code for it.  
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Figure 9: The Range Partitioners. (Pigul, 2012) 

 

2. RELATED WORK 

A. Pigul (Pigul, 2012) did a great comparative study on parallel processing Join 

algorithms and their enhancements, the comparison is shown in Figure 10 and Figure 11 shows 

the execution time comparison between the experimented algorithms in the study. 

The Authors of this article choose the work of A. Pigul (Pigul, 2012)as basis for selecting 

and using the algorithms. 

M. H. Khafagy (Khafagy, 2015) applied an index Join algorithm with a various size large 

Datasets (up to 500 million records) that shows a better performance regardless of the size of the 

Datasets, without mentioning the technique operated in creating the index and applies only 

experimental results to prove the performance of the proposed algorithm. 

Wen L. et.al. (Liu, Shen, & Wang, 2016) introduced a similarity Join in MapReduce with 

the help of a proposed similarity Join tree (SJT) as an index, SJT partitions the data file on the 

underlying data distribution, and put similar records to the same partitions.  
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Figure 10: Phases executions time of various algorithms. Size 10
4
*10

5 
(Pigul, 2012) 

 

Figure 11: Phases executions time of various algorithms. Size 10
6
*10

6
 (Pigul, 2012) 

 

3. Proposed Method 

The proposed idea in this paper is to integrate data file indexing using Hadoop HBase 

MapFiles with map-side join algorithm, providing both mathematical and experimental results. 

MapFile Index-Based Join Algorithm (MFIJ). 

The main idea of using Hadoop MapFile is not only to reduce the HDFS access 

operations, as the both index and data file blocks is transferred into memory, depending on 

requested data for each map node, leading to a faster memory side processing. 

The transferred blocks of the data file are CPU-Memory accessed to invoke key search, 

records join, and then write them into output file in HDFS storage, as described in the MFIJ 

pseudo code in Figure 12, in addition, the creation of MapFile could be for one, multiple, or all 

datasets used in the join operation depending on the needed query.  
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Figure 12: MapFile Index-Based Join. 

3.1 Mathematical Comparison 

Hadoop MapReduce splits the work load on multiple nodes (N) in which the overall 

complexity of accessing a big data file will be improved, assuming that using two files (FS, FR) 

in the join operation, each with (S, R) records respectively, and (S<R). The Reduce-Side Join 

(RSJ) cost will be: 

𝑅𝑆𝐽𝑐𝑜𝑠𝑡 = ((𝑁 + 1) ×
𝑆

𝑁
×
𝑅

2
× (

𝑙𝑜𝑔2𝑅

2
)) 

Where, (S/N) is the amount of records from file (S) in each map task, (R/2) is the average 

number of joined record instances from file (R) for each record in file (S), (1) is a representation 

of the parallel records search and read operations in the map phase while, (N) is the number of 

join-write operations in the reduce phase, finally, the ((log2 R)/2) is average binary search cost 

for a record in file (R). The Map-Side Join (MSJ) cost is as follows: 

𝑀𝑆𝐽𝑐𝑜𝑠𝑡 = (
𝑆

𝑁
×
𝑅

2
× (

𝑙𝑜𝑔2𝑅

2
)) + (

𝑆

2
) 

Where, (S/2) is the average write operations in the reduce phase, the deferent issue here is 

that (N) join operations in the reduce phase are replaced by (S/2) normal, average write 

operations, as mapping takes the responsibility of doing all the read and join operations. 

In the proposed MapFile Index-Based Join (MFIJ) the (R) file conversion to a MapFile 

with a data file of (D=R) records, and an index file of (I) records, each addressing a block of the 

data file containing (D/I) records. The MapFile Index-Based Join cost will be: 
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𝑀𝐹𝐼𝐽𝑐𝑜𝑠𝑡 = (
𝑆

𝑁
×
𝐷

2
× (

𝑙𝑜𝑔2𝐼

2
+
𝑙𝑜𝑔2

𝐷
𝐼⁄

2
)) + (

𝑆

2
) + (

𝑁𝐷

2
) + 𝑁𝐼 

Where, (ND/2, NI) are the average read cost of both data and index files respectively into 

the memory. 

For the first look into MFIJ cost, it appears that it could be more than both RSJ and MSJ 

costs, in fact, it is less if you know that both index file and data file blocks are cached into 

memory, reducing a large amount of HDFS data storage access operations, and hence, faster join 

operations, with more memory processing operations.  

3.2 Experiment and Results 

The environment used for the experiment is Apache™ Hadoop® Version 2.5.2 

(Apache™ Hadoop®, n.d.), on Cloudera© QuickStart® CDH Version 5.5 (Cloudera.com, 2016), 

a single node with 1 CPU, 100% execution capacity, and 4GB RAM, over Oracle© VM 

VirtualBox® Version 5.0.16 platform (Oracle© VM VirtualBox® V 5.0.16," , 2016), installed 

over a Microsoft© Windows® 10 Pro 64-bit (10.0, Build 10586) (Microsoft Windows 10 Pro, 

2015) with Intel® Core™ 2 Duo CPU P8400 2.26 GHz, and 8GB RAM memory. 

The code used is inspired by work of S. Asad Articles in the CodeProject© Website 

(Asad, 2015) (Asad S. , 2015), which address the same proposed methodology, using Adventure 

Works 2012 OLTP Script Dataset from Microsoft© SQL Server® Database Product Samples 

(Adventure Works for SQL Server 2012, 2012). 

The experiment is based on comparing the performance of three join programs based on 

RSJ, MSJ, and MFIJ join algorithms, over the Hadoop MapReduce environment. The creation of 

the MapFile to be used in MFIJ program is done for only one time by a forth separate program 

which creates the MapFile of the second dataset file and store it in the HDFS storage, however, 

the cost of the MapFile Creation is also calculated in the results. 

Each join program is executed 30 times to ensure the average value of performance 

which leads to best comparison, the metrics collected are the CPU execution time, and the run 

time for each 30 run instances, in each program. 

The CPU execution time result that MFIJ algorithm has the most CPU usage which is 

approximately 18%, and 19% more than RSJ, and MSJ respectively, as a result of the higher 

number of CPU-to-memory operations, while, RSJ, and MSJ has less CPU time usage, as 
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illustrated in Figure 13. The result of average run time shown in Figure 14, prove that MFIJ has 

better performance than RSJ, and MSJ, by approximately 38%, and 34% less average run time 

than RSJ, and MSJ algorithms respectively 

 

Figure 13: Average CPU Time (ms). 

 

 

Figure 14: Average Run Time (Min:Sec). 

4. Conclusion and Future Work 

The real performance improvement in this algorithm is using more CPU-Memory 

operations to accelerate the overall join operations. As proved by the experiment results 

displayed in this paper, the using of Hadoop MapFiles improved the join in Hadoop MapReduce 

environment, the authors of this paper encourage the usage of MapFiles as actual datasets rather 

than a transformation of dataset, for both static and live-stream big data datasets. For live-stream 
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datasets, an automated MapFile storage tool could be useful to collect live-stream data and 

directly store it as MapFiles inside the Hadoop HDFS storage system. 

The authors of this paper are planning to continue the investigation of the effect on 

performance by implementing MapFiles in one or more different MapReduce based join 

algorithms like Self-Join and Multi-Join Algorithms. 
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