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Abstract  

Carreau fluid is a type of generalized Newtonian fluid where viscosity depends upon the shear rate 

of the fluid and then uses it to obtain a formulation for the boundary layer equations of the Carreau 

fluid. The objective of the present study is to analyze the development of the slip effect on the MHD 

stagnation-point flow of Carreau fluid past a shrinking sheet. The mathematical modeling of 

Carreau fluid has been developed for boundary layer problem and the governing partial differential 

equations are transformed into ordinary differential equation using self-similarity transformation. 

The effect of velocity slip is taken into account and controlled by non-dimensional parameter.  The 
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dual solutions are obtained when the sheet is shrunk. The study shows that the skin friction 

decreases with an increase in velocity slip.  

Keywords 

Carreau Fluid, Boundary Layer, Shrinking Sheet, Slip Condition  

 

1. Introduction  

The study on the heat and mass transfer characteristics about convection of non-Newtonian 

fluids is of much importance because of practical engineering applications, such as catalytic 

reactors (Cohen & Maron, 1983), the filtration devices (Holeschovsky & Cooney, 1991) and blood 

plasmaphosresis devices (Beaudoin & Jaffrin, 1989).  The convective heat transfer mechanisms of 

non-Newtonian fluids are the subject of considerable works and are well understood today. The 

Carreau viscosity model is one of the non-Newtonian fluid model in which constitutive relationship 

is valid for low and high shear rates. The peristaltic transport of Carreau fluid in an asymmetric 

channel has been analyzed by Ali & Hayat (2007). The flow of Carreus fluid down an incline free 

surface was examined by Tshehla (2011). In another article, Olajuwon (2011) studied convective 

heat mass transfer in a hydromagnetic flow Carreau fluid past a vertical porous plat in presence of 

thermal radiation and thermal diffusion. Later, Hayat et al. (2014) discussed boundary layer flow of 

Carreau fluid over a convectively heated stretching sheet. Akhbar et al. (2014) analyzed MHD 

stagnation point flow of Carreau fluid toward a permeable shrinking sheet and they obtained the 

dual solution. Naganthran & Nazar (2016) extended Akhbar et al. (2014) paper to analyze the 

stability of dual solution and they showed that the first solution is stable and the second solution is 

unstable. Very recently, Azam et al. (2017) investigated the unsteady magnetohydrodynamic 

(MHD) axisymmetric flow of Carreau nanofluid over a radially stretching sheet. It should be 

mentioned that the present work is to extend paper by Akhbar et al. (2014) on MHD stagnation 

point flow of Carreau fluid toward a permeable shrinking sheet with slip condition.  

 

2. Problem Formulation  

Consider the steady two-dimensional flow of a Carreau fluid near the stagnation-point on a 

vertical flat plate of uniform ambient temperature T . It is assumed that the velocity distribution far 
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from the surface (potential flow) is given by ( )eu x a x , where 0a   is a shrinking rate. The 

constitutive equation for non-newtonian Carreau fluid can be written as,  
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  (1)                                  

where    is the infinite shear rate viscosity, 0  is the zero shear rate viscosity,   is the time 

constant and n si the dimensionless power-law index. If n = 1, then 0  , that is the Newtonian 

viscosity of the fluid.  

 

The following   equations defines   as 
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where 
  is the strain rate tensor. Extra stress tensor for Carreau fluid is 
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where , , 1,2,3ij i j   are the components of the extra stress tensor.  

Under these assumption, the boundary layer equations which govern this problem are 
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subject to the boundary conditions n = 1 
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where b is a positive constant. We introduce now the following similarity variables 

                                            ( ), /b xf b y          (7)                                             
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where   is the stream function which is defined in the usual way as       ⁄  and        ⁄ .  

Substituting (7) into Eqs. (4) and (5), the following set of ordinary differential equations results in                                

                           
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and the boundary conditions (6) become 

                                          (0) , '(0) "(0)f s f f       

                                            '( ) 1f   as            (9)                                                        

where primes denote differentiation with respect to  , 
1/2/ ( )ws v a   is the Prandtl number, and  

is the stretching/shrinking parameter, We is the Weissenberg number, M is the magnetic parameter 

and    is a velocity slip parameter.                                   

 The physical quantities of interest are the skin friction coefficient Cf   which are defined as 
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where    is the skin friction or shear stress along the stretching surface which is given by 
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Using (7), we get 

 

                                                                          
1/2Re ''(0)x fC f

  (12)    

 where    
   

    is the local Reynolds number. 

 

3. Results and Discussion 

The nonlinear ordinary differential equation (8) subject to the boundary conditions (9) were 

solved numerically using the shooting method. This well-known technique is an iterative algorithm 

which attempts to identify appropriate initial conditions for a related initial value problem (IVP) 

that provides the solution to the original boundary value problem (BVP). The shooting method is 

based on MAPLE “dsolve” command and MAPLE implementation, “shoot” (Meade et al. 1996).  
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The results are given to carry out a parametric study showing the influences of the non-dimensional 

parameters, namely the shrinking parameter   , suction parameter, s and the velocity slip parameter, 

 . 

In order to validate the accuracy of the numerical method used, the present results for the 

skin friction coefficient (0)f    for various values of   are compared with those of Naganthran and 

Nazar (2016) and Akbar et al. (2014), as shown in Table 1.  The results are in good agreement, thus 

lending confidence to the accuracy of the present results. Variation of the skin friction coefficient 

(0)f   with    are presented in Table 2. The results indicate that the increase of velocity slip 

parameter decrease the skin friction coefficient (0)f   for first solution. As noted by Naganthran and 

Nazar (2016), the first solution is stable and physically realizable, while the second solution is 

unstable. In this study, our primary focus on the effects of the shrinking parameter, slip coefficients 

and suction parameter.  

The influence of the parameters   and s on the velocity profiles clearly shown Figures 1 and 

2.  The velocity of the fluids increases with slip parameter    decrease.  This is because slip 

parameter can generate the vorticity of shrinking velocity at its enhance the velocity the surface.  

We also observed that with an increase in slip parameters, the boundary layer thickness decreases. 

Figure 2 shows that       increase with s because suction reduces drag force in order to avoid 

boundary layer separation. It can be seen that dual solution are also occur in both Figures 1 and 2, 

and  the boundary layer thicknesses are larger for second solution than for the first solution.  Figures 

1 and 2 also show that they satisfy the far field boundary conditions (9) asymptotically, which 

support the numerical results obtained. 

Table 1: Comparison of the values of skin friction coefficient with M = 0, We = 0, s = 0 and  n = 1. 

λ  Present results Naganthran and Nazar [9] Akbar et al. [8] 

-

1.2465 

0.5843 0.5844 0.5543 

 (0.5543) (0.5542) (0.5542) 

-1.20 0.9325 0.9325 0.9325 

 (0.2336) (0.2336) (0.2336) 

-1.15 1.0822 1.0822 1.0822 

 (0.1167) (0.1167) (0.1167) 
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-1.10 1.1867 1.1867 1.1867 

 (0.0492) (0.0492) (0.0492) 

-1.00 1.3288 1.3288 1.3288 

 (0) (0) (0) 

-0.75 1.4893 1.4893 1.4893 

-0.50 1.4957 1.4956 1.4956 

 (-6.9731) - - 

-0.25 1.4022 1.4022 1.4022 

0 1.2326 1.2326 1.2326 

0.10 1.1466 1.1466 1.1466 

0.20 1.0511 1.0511 1.0511 

0.50 0.7133 0.7133 0.7133 

1.00 0 0 0 

2.00 -1.8873 -1.8873 -1.8873 

5.00 -10.2647 -10.2647 -10.2647 

 (-10.7719) - - 

*( )  SECOND SOLUTION 

Table 2: Values of skin friction coefficient with M = 0.5, We = 0.3, s = 5,      and  n = 2 for 

different values of velocity slip parameter  . 

   First Solution Second Solution 

0  6.5132 -5.4351 

0.1  5.9736 -4.95001 

0.2  5.4050 -4.4993 

0.3  4.8551 -4.0816 

0.4  4.3525 -3.7004 
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Figure 1: Effects of   on the velocity profile  f   when M = 0.5, We = 0.3, s = 5,      and  

n = 2  

 

Figure 2: Effects of s on the velocity profile  f   when M = 0.5, We = 0.3,      ,      

and  n = 2  

 

4. Conclusions 

The present study explores the momentum boundary layers due to the motion of non-

Newtonian Carreau fluid with slip condition. The equations for Newtonian case can be recovered 

from the derived equations as limiting cases. The shooting method was used to solve the developed 

mathematical formulations and the calculated results are compared with the existing literature in the 

limiting case (no slip condition). It is noted that the skin friction increase when slip parameter decrease 

for first solutions. The effects of the governing parameters on velocity profiles are presented 

graphically. It is observed that the suction parameter decrease the velocity field while increases the 
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boundary layer thickness. Since the problems have dual solutions, the stability analysis will be 

carried out to identify which solution is stable and physically realizable for future work. 
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