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Abstract 
In this paper, we introduce a subclass of analytic functions by using the subordination concept 

between this function and generalized derivative operator. Some interesting properties of this 

class are obtained. 
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1. Introduction 

Let A denote the class of functions of form 

𝑓(𝑧) = 𝑧 + ∑∞
 𝑎𝑘𝑧𝑘, (1) 
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𝑘=2 

𝑘=2 

Which are analytic and in the open unit disk 𝑈 = {𝑧: 𝑧 ∈ ℂ 𝑎𝑛𝑑 |z| < 1}. A function 𝑓 ∈ 𝐴 is said 

to be in the class 𝑆∗(𝛼) starlike functions of order 𝛼 in 𝑈 if and only if 

{𝑧𝑓
′(𝑧)

} > 𝛼 (0 ≤ 𝛼 <). (2) 
𝑓 𝑧 

A function 𝑓 ∈ 𝐴 is said to be  in  the  class  𝐶(𝛼)  convex  functions  of  order 𝛼  in 𝑈 if and 

only if 

{1 + 𝑧𝑓
′′(𝑧)

} > 𝛼 (0 ≤ 𝛼 < 1). (3) 
𝑓 𝑧 

Let [𝑎, 𝑛] be the class of analytic functions of the form: 

(𝑧) = 𝑎 + 𝑎𝑛𝑧𝑛 + 𝑎𝑛+1 𝑧𝑛+1+ . . . (𝑧 ∈ 𝑈). 

Let f,∈ 𝐴, where 𝑓 (𝑧) is given by (1) and 𝑔(𝑧) is defined by 

𝑔(𝑧) = 𝑧 + ∑∞
 𝑏𝑘𝑧𝑘. 

 

Then the Hadamard product (or convolution) 𝑓 ∗ 𝑔 of the functions 𝑓 (𝑧) and (𝑧)  is defined 

by: 

(𝑓 ∗ 𝑔)(𝑧): = 𝑧 + ∑∞
 𝑎𝑘 𝑏𝑘𝑧𝑘 = : (𝑔 ∗ 𝑓)(𝑧). 

 

We consider the following differential operator. 

Definition 1.1: (see [6]). Let the function 𝑓 be in the class 𝐴 .For 𝑚, 𝛼 ∈ ℕ0 = ℕ ∪ 

{0}, 𝜆2 ≥ 𝜆1 ≥ 0, 

we define the following differential operator 

𝐷𝑚,𝛼 𝑓(𝑧) = 𝑧 + ∑∞
 [

 1+(𝜆1+𝜆2)(𝑘−1) 𝑚 𝑘 (4) 

𝜆1,2 𝑘=2 1+𝜆2(𝑘−1) 
] 𝐶(𝛼, 𝑘)𝑎𝑘 𝑧 

It is easily verified from (2), that 

(1 + 𝜆2(𝑘 − 1))𝐷𝑚+1(𝜆1, 𝜆2, 𝛼)(𝑧) = (1 + 𝜆2(𝑘 – 1) − 𝜆1)𝐷𝑚(𝜆1, 𝜆2, 𝛼)𝑓(𝑧) + 

𝑧𝜆1 (𝐷𝑚 (𝜆1 ,2, 𝛼)𝑓(𝑧))
′
.        (5) 
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It should be remarked that the class of differential operator (𝜆1, 𝜆2, 𝛼)is a generalization of 

several other linear operators considered in the earlier investigations (see[1]-[5]). 

Let 𝑓, 𝑔 be analytic functions in 𝑈. We say that 𝑓 is subordinate to 𝑔, if there exists a Schwarz 

function  𝑤(𝑧),  which (by  definition)  is  analytic   in 𝑈  with  𝑤(0)  =  0  and |𝑤(𝑧)|  < 

1 (𝑧 ∈ 𝑈 ), such that 𝑓 (𝑧) = 𝑔(𝑤(𝑧)), (𝑧  ∈  𝑈  ),  and  symbolically  written  as  the 

following: 

𝑓 ≺ 𝑔(𝑧 ∈ 𝑈) 𝑜𝑟 𝑓(𝑧) ≺ 𝑔(𝑧)(𝑧 ∈ 𝑈). 

It is known that 𝑓 (𝑧)  ≺  𝑔(𝑧) (𝑧  ∈  𝑈)  ⇒  𝑓 (0)  =  𝑔(0)  and  𝑓 (𝑈)  ⊂  𝑔(𝑈).  further,  if  

the function 𝑔 is univalent in𝑈, then we have the following equivalent 

𝑓 (𝑧) ≺ (𝑧) (𝑧 ∈ 𝑈) ⟺ 𝑓 (0) = (0) 

And 𝑓 (𝑈) ≺ (𝑈). 
 
 

By making use of the linear operator (𝜆1, 𝜆2, 𝛼)and the above-mentioned principle of 

subordination between analytic functions, we introduce and investigate the following  

subclass of the class𝐴. 

Definition 1.2: A function 𝑓 (𝑧) ∈    is said to be in the class𝜓𝛾,(𝑚, 𝜆1, 𝜆2, 𝛼, 𝑛, 𝐴, 𝐵) if it 

satisfies the following subordination condition 

 (6) 

Where the parameters 𝛾, 𝛽, 𝛼, 𝜆1, 𝜆2 , 𝑚, 𝐴 and 𝐵 are considered as follows: 

𝛾 ∈ ℂ, 𝑅𝑒(𝛽) > 0,𝜆1, 𝜆2 ≥ 0, 𝜆1, 𝜆2, ∈ ℝ, 𝑚 ≥ 0, −1 ≤ 𝐵 ≤ 1, 𝐴 ≠ 𝐵 ∈ ℝ and 𝑛 ∈ ℕ. We write 

𝜓1,(1,1,1,1, 1, −1) = 𝜓(𝛽). Clearly, the class (𝛽) is a subclass of the familiar class of Bazilevic 

functions of type     . If we set =  0;  𝜆1, 𝜆2 =  1 in the class 

𝜓𝛾,(𝑚, 𝜆1, 𝜆2, 𝛼, 𝑛, 𝐴, 𝐵), then we obtained the class studied by Liu [7]. In the resent years many 

researchers have studied various interesting properties with the liner operators, for example [11] 

and [12]. 

In the present  paper,  we  aim  at  proving  some  interesting  properties  of  the  class  𝜓𝛾,𝛽 

(𝑚, 𝜆1, 𝜆2, 𝛼, 𝑛, 𝐴, 𝐵). 
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2. Preliminary Results 

In order to establish our main results, we need the following lemmas. 

Lemma 2.1: (see [8]). Let the function ℎ be analytic and univalent (convex) in 𝑈 with 

ℎ(0) = 1. Suppose also that the function 𝑘 given by 

(𝑧) = 1 + 𝑐𝑛𝑧𝑛 + 𝑐𝑛+1𝑧+1𝑛 + . .. 

is analytic in 𝑈. If 

(𝑧) + 𝑧𝑘
′(𝑧)  

≺ ℎ(𝑧)(𝑅𝑒(𝜁) >  0;  ≠ 0; 𝑧 𝑈), (7) 
𝜁 

 

Then 

  

And (𝑧) is the best dominant. 

Lemma 2.2: (see [10]). Let (𝑧) be a convex univalent function in 𝑈 and let 𝜎, 𝜂 ∈ ℂ with 

𝑅𝑒 {1 + 𝑧𝑞
′′(𝑧)

} > 𝑚𝑎𝑥 {0, −𝑅𝑒 (𝜎)}. 
𝑞(𝑧) 𝜂 

If the function 𝑝 is analytic in 𝑈 and 

𝜎𝑝(𝑧) + 𝜂𝑧𝑝′(𝑧) ≺ 𝜎𝑞(𝑧) + 𝜂𝑧𝑞′(𝑧), 

then 

(𝑧) ≺ (𝑧) and (𝑧) is the best dominant. 

Lemma 2.3: (see [9]). Let 𝑞 be convex univalent in 𝑈 and 𝑘 ∈ ℂ. Further assume that 

(𝑘) > 0, if 

(𝑧) ∈  [𝑞(0),1] ⋂ 𝑄, 

and 𝑝(𝑧) + 𝑘𝑧𝑝′(𝑧) is univalent in 𝑈, then 

𝑞(𝑧) + 𝑘𝑧𝑞′(𝑧) ≺ 𝑝(𝑧) + 𝑘𝑧𝑝′(𝑧) 

Implies (𝑧) ≺ (𝑧) and (𝑧) is the best subdominant. 

 

3. Main Result 

Theorem 3.1: Let 𝑓 (𝑧) ∈ 𝜓𝛾, (𝑚, 𝜆1, 𝜆2, 𝛼, 𝑛, 𝐴, 𝐵) with (𝛼) > 0. Then 
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Proof: Define the function 

 

Then (𝑧) is analytic in 𝑈 with (0) = 1. By taking the derivative in the both sides in equality (9) 

and using (3), we get 

By applying Lemma 2.1 in the last equation, we get 

 

Where 𝜁 =
 (1+𝜆2(𝑘−1))𝛽

.
 

𝜆1𝑛𝛾 

The proof of Theorem 3.1 is complete. 
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Theorem 3.2: Let (𝑧) be univalent in 𝑈, 0 ≠ 𝛼 ∈ ℂ. Suppose also that (𝑧) satisfies 

  

If (𝑧) ∈ 𝐴 satisfies the following subordination 
 

And q(𝑧) is the best dominant. 

Proof: Let the function (𝑧) be defined by (9). We know that (10) holds true. Combining 

(10) and (13), we find that 

p(𝑧) + 
𝛾λ1z𝑞′(𝑧) 

(1+λ2(k−1))𝛽 
≺ q(z) + 

𝛾λ1z𝑞′(𝑧) 

(1+λ2(k−1))𝛽 

. (14) 

By using Lemma 2.2 and (14), we get the assertion of Theorem 3.2. 

Taking (𝑧) =     1+𝐴𝑧 in Theorem 3.2, we get the following result. 
      1+𝐵𝑧 

Corollary 3.1: Let 𝛾 ∈ ℂ and − 1 ≤ 𝐵 < 𝐴 ≤ 1. Suppose also that 1+𝐴𝑧 satisfies the 
                                                                                                                                                        1+𝐵𝑧 

condition (12). If (𝑧) ∈ 𝐴 satisfies the following subordination 
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Theorem 3.3: Let (𝑧) be convex univalent in 𝑈, 𝛾∈ ℂ with (𝛾) > 0. Also let 

 
 

𝑧
 

be univalent in 𝑈. If 
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