MATTER: International Journal of Science and Technology ISSN 2454-5880

Eljamal & Darus, 2015

Volume 1 Issue 1, pp.318-326

Year of Publication: 2015

DOI-https://dx.doi.org/10.20319/mijst.2016.s11.318324

This paper can be cited as: Eljamal, E. A., & Darus, M. (2015). Some Properties for Certain Subclasses of

Analytic Functions Involving Derivative Operator. MATTER: International Journal of Science and

Technology, 1(1), 318-326.

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

SOME PROPERTIES FOR CERTAIN SUBCLASSES OF ANALYTICFUNCTIONS INVOLVING DERIVATIVE OPERATOR

Ebtisam Ali Eljamal

Al-Mergeb University, Faculty of Science, Department of Mathematics Al-Khoms, Libya <u>N_ebtisam@yahoo.com</u>

MaslinaDarus

University Kebangsaan Malaysia, School of Mathematical Sciences, Faculty of Science and Technology, Bangi, Malaysia maslina@ukm.my

Abstract

In this paper, we introduce a subclass of analytic functions by using the subordination concept between this function and generalized derivative operator. Some interesting properties of this class are obtained.

Keywords

Analytic Functions, Derivative Operator, Subordination

1. Introduction

Let A denote the class of functions of form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

(1)

Which are analytic and in the open unit disk $U = \{z: z \in \mathbb{C} \text{ and } |z| < 1\}$. A function $f \in A$ is said to be in the class $S^*(\alpha)$ starlike functions of order α in U if and only if

$$\{z_{f}^{(z)}\} \ge \alpha \qquad (0 \le \alpha <).$$

$$(2)$$

A function $f \in A$ is said to be in the class $C(\alpha)$ convex functions of order α in U if and only if

$$\{1 + \frac{zf'(z)}{f(z)}\} \ge \alpha \qquad (0 \le \alpha < 1).$$
 (3)

Let [*a*, *n*] be the class of analytic functions of the form:

$$(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots (z \in U).$$

Let $f \in A$, where f(z) is given by (1) and g(z) is defined by

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k.$$

Then the Hadamard product (or convolution) f * g of the functions f(z) and (z) is defined by:

$$(f * g)(z) := z + \sum_{k=2}^{\infty} a_k b_k z^k = : (g * f)(z).$$

We consider the following differential operator.

Definition 1.1: (see [6]). Let the function f be in the class A. For $m, \alpha \in \mathbb{N}_0 = \mathbb{N} \cup$

$$\{0\}, \lambda 2 \ge \lambda 1 \ge 0,$$

we define the following differential operator

$$D^{m,\alpha} f(z) = z + \sum_{k=2}^{\infty} \left[\frac{1 + (\lambda_1 + \lambda_2)(k-1)}{1 + \lambda_2(k-1)} \right]^m C(\alpha, k) a_k z$$
(4)

It is easily verified from (2), that

$$(1 + \lambda_2(k - 1))D^{m+1}(\lambda_1, \lambda_2, \alpha)(z) = (1 + \lambda_2(k - 1) - \lambda_1)D^m(\lambda_1, \lambda_2, \alpha)f(z) + z\lambda_1(D^m(\lambda_{1,2,\alpha})f(z))'.$$
(5)

It should be remarked that the class of differential operator $(\lambda_1, \lambda_2, \alpha)$ is a generalization of several other linear operators considered in the earlier investigations (see[1]-[5]).

Let f, g be analytic functions in U. We say that f is subordinate to g, if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 ($z \in U$), such that f(z) = g(w(z)), ($z \in U$), and symbolically written as the following:

$$f \prec g(z \in U) \text{ or } f(z) \prec g(z)(z \in U).$$

It is known that $f(z) \prec g(z) (z \in U) \Rightarrow f(0) = g(0)$ and $f(U) \subset g(U)$. further, if the function g is univalent inU, then we have the following equivalent

$$f(z) \prec (z) \ (z \in U) \Leftrightarrow f(0) = (0)$$

And $f(U) \prec (U)$.

By making use of the linear operator $(\lambda_1, \lambda_2, \alpha)$ and the above-mentioned principle of subordination between analytic functions, we introduce and investigate the following subclass of the class *A*.

Definition 1.2: A function $f(z) \in$ is said to be in the class $\psi^{\gamma}(m, \lambda_1, \lambda_2, \alpha, n, A, B)$ if it satisfies the following subordination condition

$$(1-\gamma)\left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta}+\gamma\left(\frac{D^{m+1}(\lambda_{1},\lambda_{2},\alpha)f(z)}{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}\right)\left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} < \frac{1+Az}{1+Bz} \ (z \in U),$$

$$(6)$$

Where the parameters γ , β , α , λ_1 , λ_2 , *m*, *A* and *B* are considered as follows:

 $\gamma \in \mathbb{C}$, $Re(\beta) > 0, \lambda_1, \lambda_2 \ge 0, \lambda_1, \lambda_2 \in \mathbb{R}$, $m \ge 0, -1 \le B \le 1, A \ne B \in \mathbb{R}$ and $n \in \mathbb{N}$. We write $\psi^{1,}(1,1,1,1,1,-1) = \psi(\beta)$. Clearly, the class (β) is a subclass of the familiar class of Bazilevic functions of type . If we set = 0; $\lambda_1, \lambda_2 = 1$ in the class $\psi^{\gamma,}(m, \lambda_1, \lambda_2, \alpha, n, A, B)$, then we obtained the class studied by Liu [7]. In the resent years many researchers have studied various interesting properties with the liner operators, for example [11] and [12].

In the present paper, we aim at proving some interesting properties of the class $\psi^{\gamma,\beta}$ (*m*, $\lambda_1, \lambda_2, \alpha, n, A, B$).

2. Preliminary Results

In order to establish our main results, we need the following lemmas.

Lemma 2.1: (see [8]). Let the function h be analytic and univalent (convex) in U with

h(0) = 1. Suppose also that the function k given by

$$(z) = 1 + c_n z^n + c_{n+1} z^{+1n} + \dots$$

is analytic in U. If

$$(z) + \frac{zk^{'(z)}}{\zeta} \leq h(z)(\operatorname{Re}(\zeta) > 0; \neq 0; z U),$$
(7)

Then

$$k(z) \prec \chi(z) = \frac{\zeta}{n} z^{\frac{-\zeta}{n}-1} \int_0^z t^{\frac{-\zeta}{n}-1} h(t) dt \prec h(t) \qquad (z \in U),$$

And (z) is the best dominant.

Lemma 2.2: (see [10]). Let (z) be a convex univalent function in U and let $\sigma, \eta \in \mathbb{C}$ with $Re \{1 + \frac{zq^{''(z)}}{q(z)}\} > max \{0, -Re(\sigma)\}.$

If the function p is analytic in U and

$$\sigma p(z) + \eta z p'(z) \prec \sigma q(z) + \eta z q'(z),$$

then

 $(z) \prec (z)$ and (z) is the best dominant.

Lemma 2.3: (see [9]). Let q be convex univalent in U and $k \in \mathbb{C}$. Further assume that (k) > 0, if

 $(z)\in [q(0),1]\cap Q,$

and p(z) + kzp'(z) is univalent in U, then

$$q(z) + kzq'(z) < p(z) + kzp'(z)$$

Implies $(z) \prec (z)$ and (z) is the best subdominant.

3. Main Result

Theorem 3.1: Let $f(z) \in \psi^{\gamma}$, $(m, \lambda_1, \lambda_2, \alpha, n, A, B)$ with $(\alpha) > 0$. Then

MATTER: International Journal of Science and Technology ISSN 2454-5880

$$\left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta} < \frac{(1+\lambda_2(k-1))\beta}{\lambda_1 n\gamma} \int_0^1 \frac{1+Azu}{1+Bzu} u^{\frac{(1+\lambda_2(k-1))\beta}{\lambda_1 n\gamma}-1} du < \frac{1+Az}{1+Bz} \quad (z \in U),$$
(8)

Proof: Define the function

$$p(z) = \left(\frac{D^m(\lambda_1, \lambda_2, \alpha) f(z)}{z}\right)^{\beta} \quad (z \in U).$$
(9)

Then (z) is analytic in U with (0) = 1. By taking the derivative in the both sides in equality (9) and using (3), we get

$$(1-\gamma)\left(\frac{D^{\mathbf{m}}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} + \gamma\left(\frac{D^{\mathbf{m}+1}(\lambda_{1},\lambda_{2},\alpha)f(z)}{D^{\mathbf{m}}(\lambda_{1},\lambda_{2},\alpha)f(z)}\right)\left(\frac{D^{\mathbf{m}}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} = p(z) + \frac{\lambda_{1}\gamma zp'(z)}{\beta(1+\lambda_{2}(k-1))} < \frac{1+Az}{1+Bz} \quad (z \in U)$$
(10)

By applying Lemma 2.1 in the last equation, we get

$$\left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} < \frac{(1+\lambda_{2}(k-1))\beta}{\lambda_{1}n\gamma} z^{-\frac{(1+\lambda_{2}(k-1))\beta}{\lambda_{1}n\gamma}} \int_{0}^{z} t^{\frac{(1+\lambda_{2}(k-1))\beta}{\lambda_{1}n\gamma}-1} \frac{1+At}{1+Bt} dt = \frac{\zeta}{n} \int_{0}^{1} u^{\frac{\zeta}{n}-1} \frac{1+Azu}{1+Bzu} du < \frac{1+Az}{1+Bz} (z \in U),$$

$$(11)$$

Where $\zeta = \frac{(1+\lambda_2(k-1))\beta}{\lambda_1 n \gamma}$.

The proof of Theorem 3.1 is complete.

Theorem 3.2: Let (z) be univalent in $U, 0 \neq \alpha \in \mathbb{C}$. Suppose also that (z) satisfies

$$Re\left\{1+\frac{zq''(z)}{q'(z)}\right\} > max\left\{0, -Re\left(\frac{(1+\lambda_2(k-1))\beta}{\lambda_1\gamma}\right)\right\}.$$
(12)

If $(z) \in A$ satisfies the following subordination

$$(1-\gamma)\left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} + \gamma\left(\frac{D^{m+1}(\lambda_{1},\lambda_{2},\alpha)f(z)}{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}\right)\left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} < q(z) + \frac{\gamma\lambda_{1}zq'(z)}{(1+\lambda_{2}(k-1))\beta'}(13)$$

Then

$$\left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta} \prec q(z),$$

And q(z) is the best dominant.

Proof: Let the function (z) be defined by (9). We know that (10) holds true. Combining (10) and (13), we find that

$$p(z) + \frac{\gamma \lambda_1 z q'(z)}{(1 + \lambda_2 (k-1))\beta} < q(z) + \frac{\gamma \lambda_1 z q'(z)}{(1 + \lambda_2 (k-1))\beta}.$$
(14)

By using Lemma 2.2 and (14), we get the assertion of Theorem 3.2.

Taking $(z) = \frac{1+Az}{1+Bz}$ in Theorem 3.2, we get the following result.

Corollary 3.1: Let $\gamma \in \mathbb{C}$ and $-1 \leq B < A \leq 1$. Suppose also that $\frac{1+Az}{1+Bz}$ satisfies the $\frac{1+Bz}{1+Bz}$

condition (12). If $(z) \in A$ satisfies the following subordination

MATTER: International Journal of Science and Technology ISSN 2454-5880

$$(1-\gamma)\left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} + \gamma\left(\frac{D^{m+1}(\lambda_{1},\lambda_{2},\alpha)f(z)}{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}\right)\left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} < \frac{1+Az}{1+Bz} + \frac{\lambda_{1}\gamma(A-B)z}{(1++\lambda_{2}(k-1))\beta(1+Bz)^{2}}$$

Then

$$\left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta} < \frac{1+Az}{1+Bz} \text{ and } < \frac{1+Az}{1+Bz} \text{ is the best dominant.}$$

Theorem 3.3: Let (z) be convex univalent in $U, \gamma \in \mathbb{C}$ with $(\gamma) > 0$. Also let

$$\left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} \in H[q(0),1] \cap Q \text{ and}$$

$$(1-\gamma) \left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta} + \gamma \left(\frac{D^{m+1}(\lambda_{1},\lambda_{2},\alpha)f(z)}{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}\right) \left(\frac{D^{m}(\lambda_{1},\lambda_{2},\alpha)f(z)}{z}\right)^{\beta}$$

be univalent in U. If

$$q(z) + \frac{\gamma \lambda_1 z q'(z)}{(1+\lambda_2(k-1))\beta} < (1-\gamma) \left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta} + \gamma \left(\frac{D^{m+1}(\lambda_1,\lambda_2,\alpha)f(z)}{D^m(\lambda_1,\lambda_2,\alpha)f(z)}\right) \left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta},$$

Then $q(z) < \left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta}$, and q(z) is the best subdominant.

Proof: Let the function P(z) be defined by (9). Then

$$\begin{split} q(z) &+ \frac{\gamma \lambda_1 z q'(z)}{(1+\lambda_2(\mathbf{k}-1))\beta} < (1-\gamma) \left(\frac{\mathsf{D}^{\mathrm{m}}(\lambda_1,\lambda_2,\alpha) f(z)}{z}\right)^{\beta} + \gamma \left(\frac{D^{m+1}(\lambda_1,\lambda_2,\alpha) f(z)}{D^{m}(\lambda_1,\lambda_2,\alpha) f(z)}\right) \left(\frac{D^{m}(\lambda_1,\lambda_2,\alpha) f(z)}{z}\right)^{\beta} \\ &= p(z) + \frac{\gamma \lambda_1 z p'(z)}{(1+\lambda_2(\mathbf{k}-1))\beta} \,. \end{split}$$

An application of Lemma 2.3 yields the assertion of Theorem 3.3.

Ζ

Corollary 3.2: Let q(z) be convex univalent in U and $-1 \le B < A \le 1$, $\gamma \in \mathbb{C}$ with $Re(\gamma) > 0$. Also let

$$\begin{split} & \left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta} \in H[q(0),1] \cap Q \text{ and} \\ & (1-\gamma)\left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta} + \gamma\left(\frac{D^{m+1}(\lambda_1,\lambda_2,\alpha)f(z)}{D^m(\lambda_1,\lambda_2,\alpha)f(z)}\right)\left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta} \end{split}$$

be univalent in U. If

$$\frac{1+Az}{1+Bz} + \frac{\lambda_1 \gamma (A-B)z}{(1+\lambda_2 (k-1))\beta (1+Bz)^2} < (1-\gamma) \left(\frac{D^m (\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta} + \gamma \left(\frac{D^{m+1} (\lambda_1,\lambda_2,\alpha)f(z)}{D^m (\lambda_1,\lambda_2,\alpha)f(z)}\right) \left(\frac{D^m (\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^{\beta},$$

Then $\frac{1+Az}{1+Bz} < \left(\frac{D^m(\lambda_1,\lambda_2,\alpha)f(z)}{z}\right)^p$, and $\frac{1+Az}{1+Bz}$ is the best subdominant.

References

- F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, In- ternat.
 J. Math. Math. Sci, 27(2004), 1429- 1436. <u>http://dx.doi.org/10 .1155/S0 161</u> <u>171204108090</u>
- K. Al-Shaqsi and M. Darus, On univalent functions with respect to k-sum metric points defined by a generalization Ruscheweyh derivative operators, Jour. Anal. Appl, 7(1) (2009), 53-61.
- G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math., 1013, 362-372, Springer-Verlag, Heideberg, 1983.
- S.Ruscheweyh, New criteria for univalent function, Proc. Amer. Math. Soc, 49(1975), 109-115. http://dx.doi.org/10.1090/S0002-9939-1975-0367176-1
- M. Darus and K. Al-Shaqsi, Differential sandwich theorems with generalized derivative operator, Int. J. Comput. Math. Sci, 22(2008), 75-78.
- E. Eljamal and M Darus, Subordination results defined by a new differential operator, Acta Universitatis Apulensis, 27(2011), in press.
- M. S. Liu, On certain class of analytic functions defined by differential subordination, Acta Math. Sci. 22(2002), 388-392.
- S. S. Miller and P. T. Mocanu, Differential subordination: Theory and Applications, in: Series in

Pure and Applied Mathematics, vol. 225, Marcel Dekker, New York 2000.

- S. S. Miller and P. T. Mocanu, Subordinats of differential superordinations, complex Var. 48(2003), 815-826. http://dx.doi.org/10.1080/02781070310001599322
- T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for subclasses of analytic functions, Aust. J. Math Anal Appl. 3(2006),1-11.
- S. M. Khairnar and Meena More, On a subclass of multivalent β- uniformly starlike and convex functions defined by liner operator, LAENG International Journal of Applied Mathematics, 39:3(2009), IJAM 39-06.
- S. M. Khairnar and Meena More, A subclass of uniformly convex functions assciated with certain fractional calculus operator, LAENG International Journal of Applied Mathematics, 39:3 (2009), IJAM 39-07.