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Abstract 

Red blood cell counting is difficult to perform by automated visual inspection because of the large 

number of connected RBCs in blood smear slides. This paper presents anew algorithm to segment 

connected RBCs in blood smear images based on the distance per displacement ratio criterion. First, 

RBCs were separated from white blood cells and platelets by performing thresholding on the b* 

component in Lab color space. Next, connected RBCs and single RBCs were separated by using the 

Circular Compactness Shape Factor criterion. Later, points on boundaries of connected RBCs with 

high curvature were marked as concave points. Each concave point was then paired to a nearby 

concave point that maximizes the distance per displacement ratio criterion. Finally, a set of paired 

concave points was used as information for segmenting connected RBCs. Experimental results of 

RBC counting, including connected and single RBCs, on 50 blood smear images, revealed that the 
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proposed algorithm can achieve an average accuracy of up to 99.22%. 
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1. Introduction 

Blood diseases are one category of diseases that affect numerous patients, worldwide. In 

Southeast Asian countries, surveys of results from hospitals found that the ratio between the numbers 

of patients with blood diseases and other diseases was up to 47% (Kanitsap 2010). Such diseases can 

be diagnosed from blood tests to find infection, unusual shapes and unusual numbers of blood 

components, e.g., red blood cell (RBC), white blood cell (WBC), platelets and plasma (Kareem et al., 

2011). Unusual numbers of cells can occur within any cell types, especially RBCs. In order to 

diagnose the unusual number of RBCs, counting methods were usually employed (Pradipta et al., 

2015). RBC counting can be used as a part of a health checkup in order to verify for a diversity of 

conditions and help to diagnose and monitor a number of diseases that were identified by the 

production and lifespan of RBCs (Lorenzo et al., 2013). An unusual number of RBCs means that 

there are a higher or lower than the normal number of RBCs. The standard numbers of RBCs may 

vary slightly among different laboratories. For example, the standard numbers that most technicians 

use are 5.4-6.0 M/µl for males and 4.0-5.0 M/µl for females (Sumeet et al., 2014). Normally, a RBC 

is flexible, has oval biconcave disks and lacks a cell nucleus. A typical RBC has a disk diameter of 

approximately 6.2–8.2µm and a thickness at its thickest point of 2–2.5μm (Site et al., 2013). RBC 

counting using human visual inspection is difficult and quite a slow process because of the large 

number of RBCs in each blood smear image, many of them connected together (Pradipta et al., 2015). 

In this paper, we present an algorithm that focuses on segmentation of connected RBCs in 

blood smear images in order to ease the RBC counting process as well as to improve RBC counting 

accuracy. The experimental results of RBC counting performed on 50 blood smear images are given. 

 
2. Method 

The overall process consists of 5 steps which are; preprocessing (noise removal), separation of 

RBCs from other blood components, discrimination between connected RBCs and single RBCs, 

segmentation of connected RBCs and RBC counting. 
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2.1 Preprocessing 

In general, blood smears are stained using Giemsa or other stains and photographed using a 

microscope camera with 100X magnification. Generally, blood smear images not only contain blood 

components but also noise spread over the images (Heidi et al., 2011). A median filter is widely 

applied in the first step in order to remove noise and smooth the RBC images. An example of a 

median-filtered RBC image, using a window of size 5x5 pixels, is shown in Figure 1(A). 

2.2 Separation of RBCs from other blood components 

In the RBC counting procedure, only RBCs are of interest and hence must be separated from 

the other blood components, e.g., WBCs and platelets (Nasrul et al., 2013). Separation of RBCs from 

other blood components in a blood smear image is performed by thresholding the b* component in 

Lab color space. Normally, WBCs and platelets have lower yellow color components than RBCs 

(Lorenzo et al., 2013) and hence appear as dark areas in the b* component image as shown in Figure 

1(B).Contrast stretching is then applied to increase contrast between WBCs and platelets and other 

components as shown in Figure 1(C). Next, a binary image containing only WBCs and platelets is 

obtained by thresholding the contrast enhanced b* image, using the Otsu method, followed by region 

filling as shown in Figure 2(A). 

Furthermore, in order to extract the background of an image, the background is mostly 

brighter than the other objects and therefore can be extracted by converting a RGB blood smear image 

into a grey scale image, followed by thresholding using the Otsu method resulting in a background 

image as shown in Figure 2(B). 

 

 

 

Figure 1: (A) RGB blood smear image, (B) original b* component image, (C) b* component image 

after contrast stretching. 
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Finally, an RBC binary image is extracted by subtracting the WBC binary image with the 

background image. This is followed by noise removal using a morphological opening operation with a 

disk-shaped structuring element with a radius of two pixels. The resultant RBC binary image is 

illustrated in Figure 2(C). 

Figure 2: (A) WBC binary image, (B) Background binary image and (C) RBC binary image. 

 
2.3 Discrimination between connected RBCs and single RBCs 

After separating RBCs from other blood components, the next major step are to locate and 

segment connected RBCs. Without this step, connected RBCs can lead to inaccurate RBC counting. 

To order to discriminate connected RBCs from single RBCs, one promising feature that can 

accomplish this task is the circular compactness shape (CCS), a factor of a region defined as the ratio 

between region area A(R) and the square of region perimeter P
2
(R) in Equation 1: 

 
 

CCS  4
 A(R) 

 

P
2

(R) 
(1) 

 

Ideally, a perfect circular object yields the highest CCS factor of 1.0. Therefore single RBCs, 

with nearly circular shapes, will have a much higher CCS factor (around 1.0) than those of the 

elongated, connected RBCs. This is due to the fact that a region’s perimeter increases linearly with the 

expansion factor while the region’s area increases quadratic ally (Wilhelm et al., 2011). 

To calculate the CCS factor of each region, the 4-connectivity connected-component labeling 

method is first exploited in order to label connected pixels of all regions. Then the region’s area can 

be measured by counting pixels belonging to each region while the region perimeter is calculated by 

converting the region boundary contour into an 8-directional chain code and counting the chain code 

steps with vertical and horizontal segments (chain code = 0, 2, 

4, 6) weighted by 1.0 and diagonal segments (chain code = 1, 3, 5, 7) weighted by as described in 

Equation 2: 
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M 

P(R)   Length(Ci ) 
i  1 

Where 

length(C)  
 1    for c  0,2,4,6 

   2     for c 1,3,5,7 



(2) 

 
 

Figure 3(A) illustrates examples of CCS factors of RBCs. As seen, single RBCs have a CCS 

factor around 1.0 while connected RBCs have lower CCS factors. Thus, by using a threshold value of 

0.95, regions with CCS factors greater than 0.95 are taken into account as single RBCs while those 

with CCS factors lower than 0.95 are labeled as connected RBCs, as shown in Figure 3(B). 

 

 

Figure 3: (A) CCS factors of RBCs, (B) Connected RBCs, (C) Single RBCs. 
 

2.4 Segmentation of Connected RBCs 

By nature, a normal RBC usually has a circular and convex shape (Siti et al., 2013), 

segmentation of connected RBCs can effectively be performed by exploiting the circular and convex 

figure of a normal RBC. In general, a convex object is defined as the smallest polygon that fits all 

points in the region (Wilhelm et al., 2011) and thus cannot contain concave points. On the other hand, 

connected RBCs are not convex but always have pairs of concave points between the boundaries of 

adjacent RBCs. Therefore, it is possible to separate connected RBCs from each other by pairing and 

cutting these concave points. 

2.4.1 Detection of Concave Points 

Detection of concave points along the boundary of connected RBCs is an important step in 

segmenting connected RBCs accurately. A well-known feature for detecting concave points or 

corners is by curvature (Matt, 2013), for a 2-dimensional parametric curve, this is defined in Equation 
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3: 

 

K   
x' y'' y' x'' 

3 
 

(x'
2 
 y'

2 
) 2 

(3) 

Normally, concave and convex points have high negative and positive curvature values, 

respectively, and therefore can be located by considering the curvature of each point along region 

boundaries. After obtaining a binary image of connected RBCs, a simple morphological boundary 

extraction algorithm is performed by subtracting the original binary image from an eroded binary 

image. Next, a sequence of boundary points (x(t), y(t)) of connected RBCs is extracted in a counter-

clockwise direction as plotted in Figure 4(A). 

 

 

 

 

 

 

 

 

 

 

Figure 4: (A) Boundary of connected RBCs, (B) Curvature graph and detected concave points, 

(C) Detected concave points. 

 

Derivatives  x ,  x  ,  y and  y  needed  to  calculate  the  curvature  in  Equation  4  are 

computed by using the frequency domain filtering technique. First, Discrete Fourier transforms 

of x(t) an

d 
y(t
) 

is computed. In order to smooth jagged segments of the curves, a super- 

 

Gaussian low pass filter with a spread factor of 0.15 and filter power of 4is then applied. Finally, the 

n
th

 derivative of a parametric curve is computed (Matt, 2013) using Equation 4: 

x
(n)

(t)  F 1[(i)n X (i)] (4) 
 

Where X (i)  F(x(t)) is the discrete Fourier transform of x(t) .
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After obtaining curvature values for all boundary points, only local maxima points with 

negative curvature values above the threshold value corresponding to concave points are selected, as 

shown in Figures 4(B) and 4(C) 

 
2.4.2 Calculation of the Minimum Distance per Displacement Ratio 

In order to segment connected RBCs accurately, concave points of connected RBCs must be 

paired correctly. A simple way to do this is to pair concave points using the nearest neighbor criterion. 

However, this method generally doesn’t work when pairing isolated concave points or concave points 

of complicate objects. 

In this paper, a new criterion based on maximizing the minimum distance per displacement 

ratio (MDDR) between concave points for segmenting connected convex objects, such as connected 

RBCs, is proposed. Here, distance is defined as the length of a path along a region boundary from a 

start point to an end point, while displacement is defined as the length of a straight line segment from 

the start point to the end point. For a given set of boundary points 

{(x0 , y0 ),(x1, y1 ), , (xN , yN )} , distance (Dt) and displacement (Dp) are computed, 

respectively, using Equations 5 and 6 as in the following: 

 
 

N 1 
Dt     (xi  xi1)

2 
 ( yi  y )

2
 

i0 
i1 

(5) 

Dp  (x0  xN )
2 
 ( y0  y N )

2
 

 

(6) 

For each pair of concave points in a close boundary, there are always 2 distance values, one  

measured  in  a  clockwise  direction  ( Dt
cw  

)  and  another  measured  in  a  counter  clockwise direction 

( Dtccw 
) as shown in Figure 5. For segmentation task, only the minimum distance is of interest. The 

MDDR is hence given by 

 

MDDR  min( Dtcw , Dtccw ) / Dp (7) 

By finding a pair of concave points, among all possible pairs of concave points in a connected 

region, that maximizes the MDDR, then segmentation of connected convex objects can be achieved, 

object by object, repeatedly until all connected convex objects are separated. For the same 

displacement length, such a criterion guarantees that the rim connected RBC will most likely be the 

first object to be split. 
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Figure 5: Distances and displacement for computing the MDDR. 

 
 

2.4.3 Splitting connected RBCs 

The proposed segmentation technique, based on maximizing the MDDR, as presented here can 

be applied to any connected convex objects. However, for precise segmentation of connected RBCs, 

in this paper, the proposed method can be applied along with this additional criterion: the area of each 

segmented, connected RBC must be lower than 1.2 times the maximum area of single RBCs. This 

condition is introduced in order to assure that the final segmentation result yields only single 

separated RBCs. If the area of the segmented region is higher than this value and there are unused 

concave points remaining in the segmented region, it is possible that there will still be more than one 

RBC existing in the segmented region. Thus, the segmentation process will be repeated until the areas 

of all segmented regions are lower than the threshold value. 

2.5 RBC Counting 

After achieving segmentation of connected RBCs, the final RBC counting task collects all 

information by counting all labeled single RBCs and split connected RBCs. Figure 6 shows the 

overall counting result of detected single RBCs and segmented connected RBCs. 
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Figure 6: (A) Single RBCs, (B) Split connected RBCs, (C) Overall results 

 

3. Results and Discussion 

In this paper, 50 blood smear images were tested for RBC counting. Figure 7 demonstrates 

examples of tested blood smear images. It was found that the proposed method yields an overall 

counting result with average accuracy of 99.22% (95.98%-100%). The accuracy of each image is 

illustrated in Figure 7. 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 7: Accuracy measure of each image 

 

 

In summary, the complete RBC counting technique, consisting of 5 steps from preprocessing, 

separation of RBCs from other blood components, discrimination between single RBCs and 

connected RBCs, segmentation of connected RBCs to final RBC counting, has been proposed. 

Results attaining a high accuracy have been demonstrated. The proposed minimum distance to 
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displacement ratio maximization criterion is intuitive and very promising for segmenting connected 

RBCs. Furthermore, by exploiting the geometry of convex objects, the proposed segmentation method 

is simple and effective for segmenting not only connected RBCs but also all other convex objects. 

 

 

 

 
 

Figure 8: Result images 
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