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Abstract
Deleanu, Frei and Hilton have developed the notion of generalized Adams completion in a
categorical context; they have also suggested the dual notion, namely, Adams cocompletion of an
object in a category. The concept of rational homotopy theory was first characterized by Quillen.
In fact in rational homotopy theory Sullivan introduced the concept of minimal model. In this
note under a reasonable assumption, the minimal model of a 1-connected differential graded
algebra can be expressed as the Adams cocompletion of the differential graded algebra with
respect to a chosen set in the category of 1-connected differential graded algebras (in short
d.g.a.’s) over the field of rationales and d.g.a.-homomorphisms.
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1. Introduction

It is to be emphasized that many algebraic and geometrical constructions in Algebraic
Topology, Differential Topology, Differentiable Manifolds, Algebra, Analysis, Topology, etc.,
can be viewed as Adams completions or cocompletions of objects in suitable categories, with
respect to carefully chosen sets of morphisms.

The notion of generalized completion (Adams completion) arose from a categorical
completion process suggested by Adams, 1973, 1975. Originally this was considered for
admissible categories and generalized homology (or cohomology) theories. Subsequently, this
notion has been considered in a more general framework by Deleanu, Frei & Hilton, 1974, where
an arbitrary category and an arbitrary set of morphisms of the category are considered; moreover
they have also suggested the dual notion, namely the cocompletion (Adams cocompletion) of an
object in a category.

The central idea of this note is to investigate a case showing how an algebraic

geometrical construction is characterized in terms of Adams cocompletion.

2. Adams completion
We recall the definitions of Grothendieck universe, category of fractions, calculus of
right fractions, Adams cocompletion and some characterizations of Adams cocompletion.
2.1 Definition. Schubert, 1972
A Grothendeick universe (or simply universe) is a collection U of sets such that the
following axioms are satisfied:
U(): If{X:iel} isafamily of sets belongingto U, thenU;e X: is an element of U.
U(@2): IfxelU,then{x}eU.
U@B): IfxeXandXeUthenxe U.
U (4): If Xisasetbelonging toU, then P(X), the power set of X, is an element ofU.
U (5): If XandY are elements of U, then {X, Y}, the ordered pair (X,Y)and X X Y

are elements of U.

We fix a universe U that contains N the set of natural numbers (and so Z, Q, R, C).
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2.2 Definition. Schubert, 1972
A category C is said to be a smallU-category, U being a fixed Grothendeick universe, if
the following conditions hold:
S(1): The objects of € form a set which is an element of U.
S(2): Foreach pair (X, Y) of objects ofC, the set Hom(X, Y) is an element of U.

2.3 Definition. Schubert, 1972
Let C be any arbitrary category and S a set of morphisms of C. A category of fractions
of ¢ withrespect to S is a category denoted by C[S-1] together with afunctorFs : C —
C[S—-1]having the following properties:
CF (1): For each s € S, Fs(s) is an isomorphism inC[ S—1].
CF(2) : Fsis universal with respect to this property:IfG : ¢ — D is a functor such
thatG(s)is an isomorphism inD, foreachs € S,then there exists a unique
functorH : C[S-!] — Dsuch thatG = HFs. Thus we have the following

commutative diagram:

¢ - &'
Gy s H
D
Figure 1

2.4 Note.

For the explicit construction of the category C[ S—1], we refer to Schubert, 1972. We
content ourselves merely with the observation that the objects of C[ S—1] are same as those of
C and in the case when S admits a calculus of left (right) fractions, the category C[ S—1] can
be described very nicely Gabriel &Zisman, 1967, Schubert, 1972.

2.5 Definition. Schubert, 1972
A family S of morphisms in a category Cis saidto admit a calculus of right fractions if

(@ anydiagram
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X
Lf
VA - Y
S
Figure 2
inCwith s € Scan be completed to a diagram
t

w - X
gl Vf

Z - Y

N

Figure 3

witht € Sandft = sg,
f

t -
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S
(b) givenW - X Y — Zwiths € Sandsf = sg,there is a morphismt :
H

9
W — Xin Ssuch thatft = gt.

A simple characterization for a family S to admit a calculus of right fractions is the

following.
2.6 Theorem. Deleanu, et al., 1974

Let S be a closed family of morphisms ofCsatisfying

(@ ifvueSandveS, thenu€es,
(b) anydiagram

[ ] s L]
N

Figure 4
inC with s €S, can be embedded in a weak pull-back diagram
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. - .
gl Lf
. - .

Figure 5

witht € S.

Then S admits a calculus of right fractions.

2.7 Remark.

There are some set-theoretic difficulties in constructing the categoryC[S—1]; these
difficulties may be overcome by making some mild hypotheses and using Grothendeick
universes. Precisely speaking, the main logical difficulty involved in the construction of a
category of fractions and its use, arises from the fact that if the category ¢  belongs to a
particular universe, the categoryC[S—1] would, in general belongs to a higher universe Schubert,
1972. In most applications, however, it is necessary that we remain within the given initial
universe. This logical difficulty can be overcome by making some kind of assumptions which
would ensure that the category of fractions remains within the same universe Deleanu, 1975.
Also the following theorem shows that if S admits a calculus of left (right) fractions, then the
category of fractions C[S—1] remains within the same universe as to the universe to which the
category C belongs.

2.8 Theorem. Nanda, 1980

Let C beasmall U-category and S asetof morphismsof C that admits a calculus
of left (right) fractions. Then C[S—1] is a small U-category.
2.9 Definition. Deleanu, et al., 1974

Let C be an arbitrary category andSa set of morphisms of C. Let C[S—1] denote the
category of fractions of C with respectSand F: C — C[S~1]be the canonical functor. Let §

denote the category of sets and functions. Then for a given object Y of C, C[S—1](Y,—): C -
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Sdefines a covariant functor. If this functor is representable by an object YofC,
i.e.,C[S-1](Y, =) = C(Ys, —).Then Ys is called the (generalized)Adams cocompletionofY with
respect to the set of morphisms S or simply the S-cocompletion ofY. We shall often refer to Ys
as the cocompletion of Y Deleanu, et al., 1974.

We recall some results on the existence of Adams cocompletion. We state
Deleanu’stheoremDeleanu, 1975 that under certain conditions, global Adams cocompletion of an
object always exists.

2.10 Theorem. Deleanu, 1975

Let Cbe a complete smallU-category (Uis a fixed Grothendeick universe) andSa set of
morphisms ofCthat admits a calculus of right fractions. Suppose that the following compatibility
condition with product is satisfied: if eachs; : X; = Y;, i € I, is an element ofU, then
[liersi: IliesXi— [lierVis an element of S.Then every objectXof Chas an Adams

cocompletionXswith respect to the set of morphismss.

The concept of Adams cocompletion can be characterized in terms of a couniversal

property.
2.11 Definition. Deleanu, et al., 1974
Given aset S of morphisms of C, we defineS, thesaturation of S as the set of all

morphisms u in C suchthat F(u) isanisomorphism in C[S-1]. Sis said to be saturated if
S=S.
2.12 Proposition. Deleanu, et al., 1974
A family S of morphisms ofCis saturated if and only if thereexists a factor F : C -
Dsuch thatSis the collection of morphismsfsuch thatFf is invertible.
Deleanu, Frei and Hilton have shown that if the set of morphisms Sis saturated then the

Adams cocompletion of a space is characterized by a certain couniversal property.
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2.13 Theorem. Deleanu, et al., 1974

Let S be a saturated family of morphisms of ¢ admitting a calculus of right fractions.
Then an object Ys of C isthe S-cocompletion of the object Y with respectto S ifandonly
if there exists a morphisme : Ys— Yin Swhich is couniversal with respect to morphisms of S
. given a morphisms : Z — Yin Sthere exists a unique morphismt : Ys— Zin S such

thatst = e. In other words, the following diagram is commutative:

e

Ys - Y
ty 7S

Z
Figure 6
For most of the application it is essential that the morphism e : Ys— Y hasto bein

S: this is the case when S is saturated and the result is as follows:
2.14 Theorem. Deleanu, et al., 1974

Let S be asaturated family of morphisms of C and let every object of C admitan
S-cocompletion. Then the morphism e : Ys— Y belongs to S and is universal for

morphisms to S-cocomplete objects and couniversal for morphismsin  S.

3. The category DGA

Let DGA be the category of 1-connected differential graded algebras over Q (in short
d.g.a) and d.g.a.-homomorphisms. Let S denote the set of all d.g.a.-epimorphisms in
DGAwhich induce homology isomorphisms in all dimensions. The following results will be
required in the sequel.
3.1 Proposition.

Sls saturated.

Proof. The proof is evident from Proposition 2.12.

Available Online at: http://qrdspublishing.org/ 54



http://grdspublishing.org/journals-MATTER-home

s oEvg,
o .
9

i\ Global Research &

z .
Bl Development Services

@ CrossMark
MATTER: International Journal of Science and Technology

ISSN 2454-5880

3.2Proposition.
Sadmits a calculus of right fractions.

Proof. Clearly, S is a closed family of morphisms of the category DG.A. We shall verify
conditions (a) and (b) of Theorem 2.6. Letu, v € S. We show that if vu € S andv € S,
thenu € S. Clearly u is an epimorphism.We have(vu). = wv.u.and v. are both homology
isomorphisms implyingu. is a homology isomorphism. Thus u € S. Hence condition (a) of
Theorem 2.6 holds.

To prove condition (b) of Theorem 2.6 consider the diagram

A
Lf
C - B
N
Figure 7
INDGA withs € S.We assert that the above diagram can be completed to a weak pull-back
diagram
t
D - A
gl Lf
C - B
S
Figure 8

INDGAwiths € S. Sinced, B andCare inDGA we writeA = X0 An, B = Znz0 Bn,C =
Zn20 Cnof = Znz0 fS = Znzo Snandfn : An = BnsSn ¢ Cn = Bpare d.g.a.-homomorphisms.
Let Dn={(a, c) € An X Cn: fn(a) = sn(c)} € An X Ch.

We have to show thatD = Z.»o Dnis a differential graded algebra. Lett, : D, —
Anandg. : Dn — Cnbe the usual projections. Lett = ZXn>0 thandg = Zn=0 gn. Clearly the
above diagram is commutative. It is required to show that D is a d.g.a..Define a multiplication
in D in the following way: (a, ¢) - (a’, ¢") = (aa’, cc’),where(a, ¢) € Dy, (a', ¢’) € Dm.Let
d4 = Yu>0d4, di:A, - A,andd¢=%X ,.,d5dS:C ,, — C,q.Define db:D, -
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D, 1by the rule db(a, ¢) = (d4(a), d¢)),
(a,¢) € Dnletdl = T2 dP,Sinced?d?(a, ¢) = (dAdA(a), d¢d¢(c)) = (0,0)for all
(a, ¢) € D we have that d? is a differential. Next we show thatd? is a derivation: For
(a1, c1) € Dy
and(az, c2) € Dm,dP((a1, c1) - (az,c2)) = dP(aiaz, cicz) = (d4(a1az), d¢(cic2)) =
(d4(a1) - (a2) + (=D"(a1) - d4(az), d°(c1) - (c2) + (=1)"(c1) - d¥(c2)) = (d*(a1) - az,
d¢(c1) - c2) + ((=D"a1 - d4(az), (=D"c1 - d(c2)) = (d*(an),
d¢(c1)) - (az, c2) H((=1)"a1, (=1)"c1) - (d4(az), d°(c2)) = dP(ay, c1) - (az, c2) +
(=D™(ay, ¢1) - dP(ay, ¢2).
Thus D becomes a d.g.a..
We show that D is 1-connected, i.e., Ho(D) = QandH1(D) = 0. We have Ho(D) =
Zo(D)/Bo(D) = Zo(D) = {(a,c) € Zo(A) X Zo(C) : fo(a) = so(c)}.Let 11€A and
1c € C. ThendP (14, 1¢) = (d4(14), d€(1c)) = Oimplies that(14, 1¢) € Zo(D).Ho(A) =
Zo(A) = Qimplies that Zo(4A) = Q1aSimilarly,Ho(C) = Zo(C) = Qimplies that Zo(C) =
Q1c.Thus (a, ¢) € Ho(D) = Zo(D) < Zo(A) x Zo(CO)ifandonlyifa = r1s andc = ri¢ for
some r € Q. ThusHo(D) = Q.
In order to showH:(D) =0, let(a,c)€ Z1(D). This implies thata € Z1(A),c€
Z1(C)andf1(a) = s1(c). SincAis 1-connected we haveH1(4) = 0, i.e., Z1(4)/B1(4) = B1(A4);

hence a = df(a), a € Ao. Similarly sinceCis 1-connected we haveH:(C) =0,
i.e.,Z1(C)/B1(C) = B1(C);hencec = dC(%’), ¢ € Co. Now f1(a) = si(c),i.e., f1(d4(a)) =
s1(dg(c')).This givesdl;fo(a') = stOo(c'),i.e.,dB({o(a') —so(c)) =0.Thusfo(a) —

so(c) € Zo(B).But s €S. Hence s.: Ho(C) » Ho(B) is an isomorphism, i.e., so:

Zo(C) — Zo(B) is an isomorphism. Hence there exists an element ¢ € Zo(C)such that
s0(€) = fo(a) — so(c’).Moreover dg(a', c+c)= (dA(Oa'), dC(('EO) + dC(c'g)z (dA(a'()),

0+ dCO(c’))z (dA((c)z’), dC(c’()) = (a, c)showing that(a, c) € B1(D). ThusH1(D) = 0.
Clearly tis a d.g.a.-epimorphism. We show thatt. : H.(D) — H.(A)is anisomorphism.

First we show that t. : H.(D) — H.(A) is a monomorphism. The hollowing commutative diagram

will be used in the sequel.
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n-2 Sn—-2
A, - Bn-2 « Cn—2
dd 1 dé | lde¢
n—2 n—2 n—2
An—l - Bn-1 <« Cn-1
fn-1 Sn—1
dd 1 ds 1 ld¢
n—1 n—1 n—1
fn Sn
l l )
Figure 9

Since t» : Dn — Aqisthe usual projection, we have tn.(a, ¢) = a forevery (a, ¢) € Dn.
Hence the algebra homomorphism t. : Hn(D) — Hn(A) isgivenby t.[(a, ¢)] = [tn(a, ¢)] =
[a]for [(a,c)] € Hn(D). We note that Hn(D) =
Zn(D)/Bn(D) € (Zn(A) X Zn(C) )/(Bn(A) X Bx(C)).Hence

Hn(D) = (Zn(A) X Zn(C))/(Bn(A) X Bx(C))

for somed, € A,» and Cp c Cn For any [(a,c)] € Ha(D) we have [(a,c)] =(a,c)+
Bn(D) = (a,c) + (Bn(A) X Bn(0)),(a,c) € Zn(D) © Dn.  Then(a,c)+ d2_ (a,c) €

(a, c) + Ba(D), for every dljl_l(a’, ¢) € Bu(D)where (a,c¢) € Dp—1C Dy, ie., (a,c) +
di_l(a', c) = (a,c)+ (dﬁ_l(a'), dfl_l(c')) € (a, ¢) + (Ba(A) X Ba(0)), for
everyd? (@,c) = (@ (a),d4 ()€ Bl X Bu(C).  Thus(a+d4 (a),c+
d¢ (<)) € (@,0) + (Bu(A) X Ba(O)), e, [(a+ d* _ (a),c+ € ()]= [(a, )] € Hn(D).
We note that [a] = [a + d:ll_l(a’) Jand[c] = [c+ di_l(c’)].

Now let[(a1, c1)], [(az c2)] € Hn(D)and assume that t.[(a1, c1)] = t:[(az, c2)]; this
gives[ai] = [az], i.e. a1 + di_l(a')] =[az + di_l(a')].
Since(as, c1), (az, c2), (dAn_l(a'), di_l(c')) € Dy, We have fn(a1) = sn(c1), fn(az) = sn(c2)
andfnd:’l_l(a') = Sp an_l(c'). Sofn(ar + di‘l_l(a')) = sn(c1 + an_l(c')) andfn(az +
dﬁ_l(a’)) = su(c2 + an _1(c’)). Therefore, from the above,t.[(a1, c1)] = t[(az c2)]

givesf.[ai + dA_l(a')] = filar + dA _1(a’)], i.e.[fr(ar + dA _1(a’))] = [fn(az+

Available Online at: http://qrdspublishing.org/ 57

Bl Development Services
3


http://grdspublishing.org/journals-MATTER-home

AR\ Global Research &

@ CrossMark
MATTER: International Journal of Science and Technology

ISSN 2454-5880

dA_l(a'))];this gives [sp(cy + dC_l(c'))] = [sp(cz + dC_l(c'))], i.e., s.ci+ dC_l(c')] =

n

S«[c2 + d¢ 1(c’)]. Since s. is an isomorphism we have [c1+ d¢ 1(c’)] =[c2 + d¢ 1(c’)].

n n—

Hence we have([a1 + di_l(a’)], [c1+ an_l(c’)]): ([az + di_l(a’)], [c2 +
isomorphisma. : (Zn(A4)/Bn(A)) X (Zu(C)/Bxr(C)) = (Zn(A) X Zn(C))/(Bn(&) X Bn(C))to
the above to geta.([a1+ di‘l_l(a')], [c1+ di_l(c')]) = a-([az + di_l(a')], [c2+
dfl_l(c’)]), ie,[(a1 + di_l(a’), c1+ di_l(c’))] =[(az + di_l(a’), c2+ di_l(c’))]. Thus
[(a1, c1)] = [(a2, c2)], showing that t. : H.(D) - H.(A)is a monomorphism.

Next we show that t. : H.(D) — H.(A) is anepimorphism.Let[a] € H.(A) be arbitrary.
Then fn(a) € By Since s is an epimorphism fn(a) = sa(c) for some ¢ € Cn. Hence(a, ¢) €
Dn. Thent.[(a, ¢)] = [ta(a, ¢)] = [a]showing t. is an epimorphism. Since t is an
epimorphism and t. is an isomorphism we conclude thatt € S.

Next for any d.g.a. E =n§0Enand d.g.a.-homomorphismsu = {u, : En— An}andv =

{vn: En—= Cn}inDGA, let the following diagram

N

E - A
vi lf
C - B
N
Figure 10
commute, i.e., fu = sv. Consider the diagram
E
Nu
N h
t
D - A
vy gl lf
C - B
N
Figure 11

Define h = {h, : En = Dx}by the ruleh(x) = (u(x), v(x))for x € E. Clearly h is well

defined and is a d.g.a. homomorhism. Now for any x €E,th(x) = t(u(x), v(x)) =
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u(x)andgh(x) = g(u(x), v(x)) = v(x), i.e.,th = uandgh = v. This completes the proof of
Proposition 3.2.m
3.3 Proposition.

If eachs; : Ai = B;,i € I,is an element ofS, where the index setlis an element of U,
then [liersi: [liet Ai = [lier Biis an element ofS.

Proof. The proof is trivial.
The following result can be obtained from the above discussion.
3.4 Proposition. The categoryDGAis complete.

From Propositions 3.1- 3.4, it follows that the conditions of Theorem 2.10 are fulfilled
and by the use of Theorem 2.13, we obtain the following result.
3.5 Theorem.

Every objectAof the category DGA has an Adams cocompletion As with respect to the
set of morphisms S and there exists a morphisme : As — AinS which is couniversal with
respect to the morphisms inS, that is, given a morphisms : B — AinS there exists a unique

morphismt : As = Bsuch that st = e. In other words the following diagram is commutative:

e

As g A
tl 7S

B
Figure 12
4. Minimal model

We recall the following algebraic preliminaries.

Available Online at: http://qrdspublishing.org/ 59



http://grdspublishing.org/journals-MATTER-home

& DEVg,
o

'}

i\ Global Research &

z .
Bl Development Services
3

@ CrossMark
MATTER: International Journal of Science and Technology

ISSN 2454-5880

4.1 Definition. Deschner, 1975, Wu, 1980
A d.g.a. M is called a minimal algebra if it satisfies the following properties:
e Mis free as a graded algebra.
e Mhas decomposable differentials.
e My = Q M =0.
e Mhas homology of finite type, i.e., for eachn, H,(M) is a finite dimensionalvector
space.
Let M be the full subcategory of the category DGA consisting of all minimal algebras
and all d.g.a.-maps between them.
4.2 Definition. Deschner, 1975, Wu, 1980
LetAbe a simply connected d.g.a..A d.g.a.M = Muis called a minimal model of A if the
following conditions hold:
0) Ms€ M.
(ii) Thereis a d.g.a.-mapp : M4 — Awhich induces an isomorphism on homology,
i.e.,p«: Hi(My) j H.(A).
Henceforth we assume that the d.g.a.-mapp : M4 — Ais a d.g.a.-epimorphism.
4.3 Theorem.Deschner, 1975, Wu, 1980
LetAbe a simply connected d.g.a. andMa be its minimal model. The mapp : Ma -
Ahas couniversal property, i.e., for any d.g.a. Zand d.g.a.-mape : Z — Athere exists a d.g.a.-

map 6 : Ma — Zsuch thatp = ¢8; furthermore if the d.ga-map ¢ :Z — Ais an

epimorphism thenp = @9, i.e., the following diagram is commutative:

P
My - A
61l 2
Z
Figure 13
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5. The result

We show that under a reasonable assumption,the minimal model of a 1-connected d.g.a.
can be expressed as the Adams cocompletion of the d.g.a. with respect to the chosen set of d.g.a.-
maps.
5.1 Theorem. M4 = As.
Proof. Let e : As — Abe the map as in Theorem 3.5 andp : My — Abe the d.g.a.-map as in
Theorem 4.3. Since the d.g.a.-map p : Ma = A is a d.g.a.-epimorphism, by the couniversal

property of e there exists a d.g.a.-map 6 : As = Mjsuch that e = p6.

AS - A
01l 2p

My
Figure 14

By the couniversal property of pthere exists a d.g.a.-map¢ : M4 — Assuch thatep = p.

p
My 4 A
ol 7e
As
Figure 15

Consider the diagram
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As - A
61l

14 L My /e

el

As
Figure 16

Thus we haveep8 = pf = e .By the uniqueness condition of the couniversal property

of e (Theorem 3.5), we conclude thatp8 = 14,.Next consider the diagram

p
My - A
ol

v, I As 7p

61l

My
Figure 17

Thus we havep8¢ = e = p. By the couniversal oroperty of p (Theorem 4.3), we
conclude thatf¢ = 1y, ThusM4 = As. This completes the proof of Theorem 5.1.
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