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Abstract 

Deleanu, Frei and Hilton have developed the notion of generalized Adams completion in a 

categorical context; they have also suggested the dual notion, namely, Adams cocompletion of an 

object in a category. The concept of rational homotopy theory was first characterized by Quillen. 

In fact in rational homotopy theory Sullivan introduced the concept of minimal model. In this 

note under a reasonable assumption, the minimal model of a 1-connected differential graded 

algebra can be expressed as the Adams cocompletion of the differential graded algebra with 

respect to a chosen set in the category of 1-connected differential graded algebras (in short 

d.g.a.’s) over the field of rationales and d.g.a.-homomorphisms. 
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1. Introduction 

It is to be emphasized that many algebraic and geometrical constructions in Algebraic 

Topology, Differential Topology, Differentiable Manifolds, Algebra, Analysis, Topology, etc., 

can be viewed as Adams completions or cocompletions of objects in suitable categories, with 

respect to carefully chosen sets of morphisms. 

The notion of generalized completion (Adams completion) arose from a categorical 

completion process suggested by Adams, 1973, 1975. Originally this was considered for 

admissible categories and generalized homology (or cohomology) theories. Subsequently, this 

notion has been considered in a more general framework by Deleanu, Frei & Hilton, 1974, where 

an arbitrary category and an arbitrary set of morphisms of the category are considered; moreover 

they have also suggested the dual notion, namely the cocompletion (Adams cocompletion) of an 

object in a category. 

The central idea of this note is to investigate a case showing how an algebraic 

geometrical construction is characterized in terms of Adams cocompletion. 

 

2. Adams completion 

We recall the definitions of Grothendieck universe, category of fractions, calculus of 

right fractions, Adams cocompletion and some characterizations of Adams cocompletion. 

2.1 Definition. Schubert, 1972 

A Grothendeick universe (or simply universe) is a collection 𝒰 of sets such that the 

following axioms are satisfied: 

U (1): If {𝑋𝑖: 𝑖 ∈ 𝐼 }  is a family of sets belongingto 𝒰, then⋃𝑖∈I 𝑋𝑖  is an element of  𝒰. 

U (2): If 𝑥 ∈ 𝒰, then {𝑥} ∈ 𝒰. 

U (3): If 𝑥 ∈ 𝑋 and 𝑋 ∈ 𝒰 then 𝑥 ∈ 𝒰. 

U (4): If 𝑋 is a set belonging to𝒰, then 𝑃(𝑋), the power set of 𝑋, is an element of𝒰. 

U (5): If 𝑋 and 𝑌 are elements of 𝒰, then {𝑋, 𝑌}, the ordered pair (𝑋, 𝑌) and 𝑋 × 𝑌 

are elements of 𝒰. 
 

We fix a universe 𝒰 that contains ℕ the set of natural numbers (and so ℤ, ℚ, ℝ, ℂ ). 
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2.2 Definition. Schubert, 1972 

A category 𝒞 is said to be a small𝒰-category, 𝒰 being a fixed Grothendeick universe, if 

the following conditions hold: 

S(1) : The objects of 𝒞 form a set which is an element of 𝒰. 

S (2): For each pair (𝑋, 𝑌) of objects of𝒞, the set Hom(𝑋, 𝑌) is an element of 𝒰. 
 

2.3 Definition. Schubert, 1972 

Let  𝒞 be any arbitrary category and  𝑆  a set of morphisms of  𝒞. A category of  fractions  

of  𝒞  with respect  to  𝑆  is  a  category denoted  by   𝒞[𝑆−1]   together with a functor𝐹𝑆 ∶ 𝒞 → 

𝒞[𝑆−1]having the following properties: 

CF (1): For each 𝑠 ∈ 𝑆, 𝐹𝑆(𝑠) is an isomorphism in𝒞[ 𝑆−1]. 

CF(2) : 𝐹𝑆is universal with respect to this property:If𝐺 ∶ 𝒞 → 𝒟 is a  functor  such  

that𝐺(𝑠)is an isomorphism in𝒟, foreach𝑠 ∈ 𝑆,then there  exists  a  unique  

functor𝐻 ∶ 𝒞[𝑆−1] → 𝒟such that𝐺 = 𝐻𝐹𝑆. Thus we have the following 

commutative diagram: 

 
𝐹𝑆 

𝒞 → 𝒞[𝑆 
 

𝐺 ↓ ↙ 𝐻 

−1] 

 

 
 
 

2.4 Note. 

𝒟 

Figure 1 

For the  explicit  construction of the category 𝒞[ 𝑆−1], we refer to Schubert, 1972. We 

content ourselves merely with the observation that the  objects of 𝒞[ 𝑆−1] are same as those of 

𝒞  and in the case when  𝑆   admits a calculus of left (right) fractions, the category   𝒞[ 𝑆−1] can 

be described very nicely Gabriel &Zisman, 1967, Schubert, 1972. 

2.5 Definition. Schubert, 1972 

A family 𝑆 of morphisms in a category 𝒞is saidto admit a calculus of right fractions if 

(a) any diagram 
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𝑋 
 

↓ 𝑓 
 

𝑍 → 𝑌 
𝑠 

Figure 2 

in𝒞with 𝑠 ∈ 𝑆can be completed to a diagram 

𝑡 

𝑊 → 𝑋 
 

𝑔 ↓ ↓ 𝑓 
 

 
 

 
with𝑡 ∈ 𝑆and𝑓𝑡 =  𝑠𝑔, 

𝑓 

𝑍 → 𝑌 
𝑠 

Figure 3 

𝑡 

(b) given 𝑊 → 𝑋 
→ 𝑆 

→ 
𝑌 → 

𝑔 

𝑍with𝑠  ∈ 𝑆and𝑠𝑓 = 𝑠𝑔,there is a morphism𝑡 ∶ 

𝑊 → 𝑋in 𝑆such that𝑓𝑡 = 𝑔𝑡. 
 
 

A simple characterization f o r  a family 𝑆 to admit a calculus of right fractions is the 

following. 

2.6 Theorem. Deleanu, et al., 1974 

Let 𝑆 be a closed family of morphisms of𝒞satisfying 
 

(a) if 𝑣𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆, then 𝑢 ∈ 𝑆, 

(b) any diagram 

⦁ 
 
 

 
⦁ → ⦁ 

𝑠 

Figure 4 

in𝒞  with 𝑠 ∈ 𝑆, can be embedded in a weak pull-back diagram 
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𝑡 

⦁ → ⦁ 
 

𝑔 ↓ ↓ 𝑓 
 

⦁ → ⦁ 
𝑠 

Figure 5 

with𝑡 ∈ 𝑆. 

Then 𝑆 admits a calculus of right fractions. 
 

2.7 Remark. 

There are some set-theoretic difficulties in constructing the category𝒞[𝑆−1]; these 

difficulties may be overcome by making some mild hypotheses and using Grothendeick 

universes. Precisely speaking, the main logical difficulty involved in the construction of a 

category of fractions and its use, arises from the fact that if the category 𝒞  belongs to a  

particular universe, the category𝒞[𝑆−1] would, in general belongs to a higher universe Schubert, 

1972. In most applications, however, it is necessary that we remain within the given initial 

universe. This logical difficulty can be overcome by making some kind of assumptions which 

would ensure that the category of fractions remains within the same universe Deleanu, 1975. 

Also the following theorem shows that if 𝑆 admits a calculus of left (right) fractions, then the 

category of fractions 𝒞[𝑆−1] remains within the same universe as to the universe to which the 

category 𝒞 belongs. 

2.8 Theorem. Nanda, 1980 

Let  𝒞  be a small  𝒰-category   and   𝑆   a set of morphisms of  𝒞 that admits a calculus  

of left (right) fractions. Then 𝒞[𝑆−1] is a small 𝒰-category. 

2.9 Definition. Deleanu, et al., 1974 

Let 𝒞 be an arbitrary category and𝑆a set of morphisms of 𝒞. Let 𝒞[𝑆−1] denote the 

category of fractions of 𝒞 with respect𝑆and 𝐹: 𝒞 → 𝒞[𝑆−1]be the canonical  functor.  Let  𝒮 

denote the category of sets and functions. Then for a given object 𝑌 of 𝒞, 𝒞[𝑆−1](𝑌, −) ∶ 𝒞 → 
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𝒮defines a covariant functor. If this functor is  representable  by  an  object  𝑌𝑆of𝒞,  

i.e.,𝒞[𝑆−1](𝑌, −) ≅ 𝒞(𝑌𝑆, −).Then 𝑌𝑆 is called the (generalized)Adams cocompletionof𝑌 with 

respect to the set of morphisms  𝑆  or simply the 𝑆-cocompletion of𝑌. We shall often refer to   𝑌𝑆 

as the cocompletion of 𝑌 Deleanu, et al., 1974. 

We recall some results on the existence of Adams cocompletion. We state 

Deleanu’stheoremDeleanu, 1975 that under certain conditions, global Adams cocompletion of an 

object always exists. 

2.10 Theorem. Deleanu, 1975 

Let 𝒞be a complete small𝒰-category (𝒰is a fixed Grothendeick universe) and𝑆a set of 

morphisms of𝒞that admits a calculus of right fractions. Suppose that the following compatibility 

condition with product is satisfied: if each𝑠𝑖 ∶ 𝑋𝑖 → 𝑌𝑖, 𝑖 ∈ 𝐼, is an element of𝒰, then 

∏𝑖∈𝐼 𝑠𝑖  ∶ ∏𝑖∈𝐼 𝑋𝑖 → ∏𝑖∈𝐼 𝑌𝑖is an element of 𝑆.Then every object𝑋of 𝒞has an Adams 

cocompletion𝑋𝑆with respect to the set of morphisms𝑆. 

The concept of Adams cocompletion can be characterized in terms of a couniversal 

property. 

2.11 Definition. Deleanu, et al., 1974 

Given aset 𝑆   of morphisms  of 𝒞, we  define𝑆 ,  the saturation of 𝑆 as the set of all 

morphisms   𝑢   in   𝒞   such that   𝐹(𝑢) is an isomorphism in 𝒞[𝑆−1].  𝑆is said to be saturated if 

𝑆 = 𝑆 . 

2.12 Proposition. Deleanu, et al., 1974 

A family 𝑆 of morphisms of𝒞is saturated if and only if thereexists a factor 𝐹 ∶ 𝒞 → 

𝒟such that𝑆is the collection of morphisms𝑓such that𝐹𝑓 is invertible. 

Deleanu, Frei and Hilton have shown that if the set of morphisms 𝑆is saturated then the 

Adams cocompletion of a space is characterized by a certain couniversal property. 
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2.13 Theorem. Deleanu, et al., 1974 

Let 𝑆 be a saturated family of morphisms of 𝒞 admitting a calculus of right fractions. 

Then an object   𝑌𝑆   of   𝒞   is the 𝑆-cocompletion of the object   𝑌  with respect to    𝑆  if and only 

if there exists a morphism𝑒 ∶ 𝑌𝑆 → 𝑌in 𝑆which is couniversal with respect to morphisms of 𝑆 

:  given a morphism𝑠  ∶  𝑍  →  𝑌in  𝑆there exists a unique  morphism𝑡  ∶ 𝑌𝑆  →   𝑍in   𝑆   such   

that𝑠𝑡 = 𝑒. In other words, the following diagram is commutative: 

𝑒 

𝑌𝑆 → 𝑌 
 

𝑡 ↓ ↗ 𝑠 
 

𝑍 

Figure 6 

For most of the application it is essential that the morphism 𝑒 ∶ 𝑌𝑆 → 𝑌 has to be in 

𝑆; this is the case when 𝑆 is saturated and the result is as follows: 

2.14 Theorem. Deleanu, et al., 1974 

Let   𝑆   be a saturated family   of morphisms of 𝒞 and let every object of 𝒞 admit an 

𝑆-cocompletion. Then the morphism 𝑒   ∶   𝑌𝑆  →  𝑌 belongs to 𝑆 and is universal for 

morphisms to   𝑆-cocomplete objects and couniversal for morphisms in  𝑆. 

3. The category 𝓓𝓖𝓐 

Let 𝒟𝒢𝒜 be the category of 1-connected differential graded algebras over ℚ (in short 

d.g.a.)  and  d.g.a.-homomorphisms.  Let 𝑆 denote the set of all d.g.a.-epimorphisms in 

𝒟𝒢𝒜which induce homology isomorphisms in all dimensions. The following results will be 

required in the sequel. 

3.1 Proposition. 

𝑆Is saturated. 
 

Proof. The proof is evident from Proposition 2.12.  
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𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 

3.2 Proposition. 

𝑆admits a calculus of right fractions. 
 

Proof. Clearly, 𝑆 is a closed family of morphisms of the category 𝒟𝒢𝒜. We shall verify 

conditions (𝑎) and (𝑏) of Theorem  2.6.  Let𝑢, 𝑣  ∈ 𝑆.  We  show  that  if  𝑣𝑢  ∈ 𝑆  and𝑣  ∈ 𝑆, 

then𝑢 ∈ 𝑆. Clearly 𝑢 is an epimorphism.We have(𝑣𝑢)∗ = 𝑣∗𝑢∗and 𝑣∗ are both homology 

isomorphisms implying𝑢∗ is a homology isomorphism. Thus 𝑢 ∈ 𝑆. Hence condition (𝑎) of 

Theorem 2.6 holds. 

To prove condition (𝑏) of Theorem 2.6 consider the diagram 

 
 

𝐴 
 

↓ 𝑓 
 

𝐶 → 𝐵 
𝑠 

Figure 7 

In𝒟𝒢𝒜 with𝑠 ∈ 𝑆.We assert that the above diagram can be completed to a weak pull-back 

diagram 

𝑡 

𝐷 → 𝐴 
 

𝑔 ↓ ↓ 𝑓 
 

𝐶 → 𝐵 
𝑠 

Figure 8 

In𝒟𝒢𝒜with𝑠  ∈ 𝑆.   Since𝐴,  𝐵  and𝐶are  in𝒟𝒢𝒜   we  write𝐴 =  Σ𝑛≥0 𝐴𝑛,   𝐵 =  Σ𝑛≥0 𝐵𝑛,𝐶  = 

Σ𝑛≥0 𝐶𝑛,𝑓  =  Σ𝑛≥0 𝑓𝑛,𝑠  =  Σ𝑛≥0 𝑠𝑛and𝑓𝑛  ∶  𝐴𝑛  →  𝐵𝑛,𝑠𝑛  ∶  𝐶𝑛 →  𝐵𝑛,are  d.g.a.-homomorphisms. 

Let 𝐷𝑛 = {(𝑎, 𝑐) ∈ 𝐴𝑛 × 𝐶𝑛 ∶ 𝑓𝑛(𝑎) = 𝑠𝑛(𝑐)} ⊂ 𝐴𝑛 × 𝐶𝑛. 

We  have  to  show  that𝐷  =  Σ𝑛≥0 𝐷𝑛is  a  differential  graded  algebra.  Let𝑡𝑛  ∶  𝐷𝑛   → 

𝐴𝑛and𝑔𝑛 ∶ 𝐷𝑛 →  𝐶𝑛be  the  usual  projections.  Let𝑡 =  Σ𝑛≥0 𝑡𝑛and𝑔 =  Σ𝑛≥0 𝑔𝑛.  Clearly  the 

above diagram is commutative. It is required to show that  𝐷  is a d.g.a..Define a multiplication  

in 𝐷 in the following way: (𝑎, 𝑐) ∙ (𝑎′, 𝑐′) = (𝑎𝑎′, 𝑐𝑐′),where(𝑎, 𝑐) ∈ 𝐷𝑛, (𝑎′, 𝑐′) ∈ 𝐷𝑚.Let 

𝑑𝐴 =  Σ𝑛≥0 𝑑𝐴, 𝑑𝐴 ∶ 𝐴 → 𝐴 and𝑑𝐶 = Σ 𝑑𝐶,𝑑𝐶 ∶ 𝐶 → 𝐶 .Define 𝑑𝐷 ∶ 𝐷 → 𝑛 𝑛+1 𝑛≥0 𝑛 𝑛+1 
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0 

𝑛 

𝑛 𝑛 𝑛 𝐷𝑛+1by the rule 𝑑𝐷(𝑎, 𝑐) = (𝑑𝐴(𝑎), 𝑑𝐶(𝑐)), 

(𝑎, 𝑐)  ∈ 𝐷𝑛.Let𝑑𝐷 =  Σ𝑛≥0 𝑑𝐷.Since𝑑𝐷𝑑𝐷(𝑎, 𝑐) = (𝑑𝐴𝑑𝐴(𝑎), 𝑑𝐶𝑑𝐶(𝑐)) = (0,0)for all 

(𝑎, 𝑐) ∈ 𝐷  we  have  that  𝑑𝐷 is  a  differential.  Next  we  show  that𝑑𝐷  is  a  derivation:  For 

(𝑎1, 𝑐1) ∈ 𝐷𝑛 

and(𝑎2, 𝑐2) ∈ 𝐷𝑚,𝑑𝐷((𝑎1, 𝑐1) ∙ (𝑎2, 𝑐2)) = 𝑑𝐷(𝑎1𝑎2, 𝑐1𝑐2) = (𝑑𝐴(𝑎1𝑎2), 𝑑𝐶(𝑐1𝑐2)) = 

(𝑑𝐴(𝑎1) ∙ (𝑎2) + (−1)𝑛(𝑎1) ∙ 𝑑𝐴(𝑎2), 𝑑𝐶(𝑐1) ∙ (𝑐2) + (−1)𝑛(𝑐1) ∙ 𝑑𝐶(𝑐2)) = (𝑑𝐴(𝑎1) ∙ 𝑎2 , 

𝑑𝐶(𝑐1) ∙ 𝑐2) + ((−1)𝑛𝑎1 ∙ 𝑑𝐴(𝑎2), (−1)𝑛𝑐1 ∙ 𝑑𝐶(𝑐2)) = (𝑑𝐴(𝑎1), 

𝑑𝐶(𝑐1)) ∙ (𝑎2, 𝑐2) +((−1)𝑛𝑎1, (−1)𝑛𝑐1) ∙ (𝑑𝐴(𝑎2), 𝑑𝐶(𝑐2)) = 𝑑𝐷(𝑎1, 𝑐1) ∙ (𝑎2, 𝑐2) + 

(−1)𝑛(𝑎1, 𝑐1) ∙ 𝑑𝐷(𝑎2, 𝑐2). 

Thus 𝐷 becomes a d.g.a.. 

We  show  that  𝐷   is  1-connected,  i.e.,  𝐻0(𝐷) ≅  ℚand𝐻1(𝐷) ≅ 0. We  have  𝐻0(𝐷) = 

𝑍0(𝐷)⁄𝐵0(𝐷) =   𝑍0(𝐷) =   {(𝑎, 𝑐)  ∈ 𝑍0(𝐴) × 𝑍0(𝐶) ∶ 𝑓0(𝑎) =  𝑠0(𝑐)}.Let 1𝐴 ∈ 𝐴 and 

1𝐶 ∈ 𝐶. Then𝑑𝐷(1𝐴, 1𝐶) = (𝑑𝐴(1𝐴), 𝑑𝐶(1𝐶)) = 0implies that(1𝐴, 1𝐶) ∈ 𝑍0(𝐷).𝐻0(𝐴) = 

𝑍0(𝐴) ≅ ℚimplies that 𝑍0(𝐴) = ℚ1𝐴.Similarly,𝐻0(𝐶) = 𝑍0(𝐶) ≅ ℚimplies that 𝑍0(𝐶) = 

ℚ1𝐶.Thus (𝑎, 𝑐) ∈ 𝐻0(𝐷) = 𝑍0(𝐷)  ⊂  𝑍0(𝐴) × 𝑍0(𝐶)if and only if𝑎  = 𝑟1𝐴  and𝑐  = 𝑟1𝐶  for 

some 𝑟 ∈ ℚ. Thus𝐻0(𝐷) ≅ ℚ. 

In order to show𝐻1(𝐷) ≅ 0, let(𝑎, 𝑐) ∈  𝑍1(𝐷). This implies that𝑎  ∈  𝑍1(𝐴),𝑐 ∈ 

𝑍1(𝐶)and𝑓1(𝑎) = 𝑠1(𝑐). Sinc𝐴is 1-connected we have𝐻1(𝐴) ≅ 0, i.e., 𝑍1(𝐴)⁄𝐵1(𝐴) = 𝐵1(𝐴); 

hence 𝑎  =  𝑑𝐴(𝑎′),  𝑎′ ∈  𝐴0. Similarly since𝐶is 1-connected we have𝐻1(𝐶) ≅ 0, 

i.e.,𝑍1(𝐶)⁄𝐵1(𝐶) = 𝐵1(𝐶);hence𝑐 = 𝑑𝐶(𝑐′), 𝑐′ ∈ 𝐶0. Now 𝑓1(𝑎) = 𝑠1(𝑐),i.e., 𝑓1(𝑑𝐴(𝑎′)) = 
0 0 

𝑠1(𝑑𝐶(𝑐′)).This gives𝑑𝐵𝑓0(𝑎′) = 𝑑𝐵𝑠0(𝑐′),i.e.,𝑑𝐵(𝑓0(𝑎′) − 𝑠0(𝑐′)) = 0.Thus𝑓0(𝑎′) − 
0 0 0 0 

𝑠0(𝑐′)  ∈  𝑍0(𝐵).But   𝑠   ∈ 𝑆.    Hence   𝑠∗  ∶  𝐻0(𝐶) →  𝐻0(𝐵) is  an   isomorphism,  i.e.,   𝑠0 ∶ 

𝑍0(𝐶)   →  𝑍0(𝐵) is  an  isomorphism. Hence  there  exists  an  element  𝑐   ∈ 𝑍0(𝐶)such  that 

𝑠0(𝑐 ) = 𝑓0(𝑎′) −  𝑠0(𝑐′).Moreover 𝑑𝐷(𝑎′, 𝑐  + 𝑐′) = (𝑑𝐴(𝑎′), 𝑑𝐶(𝑐 ) + 𝑑𝐶(𝑐′))= (𝑑𝐴(𝑎′), 
0 0 0 0 0 

0 + 𝑑𝐶(𝑐′))= (𝑑𝐴(𝑎′), 𝑑𝐶(𝑐′) = (𝑎, 𝑐)showing that(a, c) ∈ 𝐵1(𝐷). Thus𝐻1(𝐷) ≅ 0. 
0 0 0 

Clearly 𝑡is a d.g.a.-epimorphism. We show that𝑡∗ ∶  𝐻∗(𝐷)  →  𝐻∗(𝐴)is  an isomorphism. 

First we show that 𝑡∗ ∶ 𝐻∗(𝐷) → 𝐻∗(𝐴) is a monomorphism. The hollowing commutative diagram 

will be used in the sequel. 
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𝑛−1 

𝑛−1 

⋮ ⋮ ⋮ 
↓ ↓ ↓ 

𝐴𝑛−2 

𝑓𝑛−2 

→ 𝐵𝑛−2 
𝑠𝑛−2 

← 𝐶𝑛−2 
 

𝑑𝐴 ↓ 𝑑𝐵 ↓ ↓ 𝑑𝐶 
𝑛−2 𝑛−2 𝑛−2 

 

𝐴𝑛−1 → 𝐵𝑛−1 
𝑓𝑛−1 

← 𝐶𝑛−1 
𝑠𝑛−1 

 

𝑑𝐴 ↓ 𝑑𝐵 ↓ ↓ 𝑑𝐶 
𝑛−1 𝑛−1 𝑛−1 

 

𝐴𝑛 → 𝐵𝑛 
𝑓𝑛 

← 𝐶𝑛 
𝑠𝑛 

↓ ↓ ↓ 
⋮ ⋮ ⋮ 

Figure 9 

Since  𝑡𝑛  ∶  𝐷𝑛  →  𝐴𝑛is the usual projection, we have  𝑡𝑛(𝑎, 𝑐) = 𝑎  for every   (𝑎, 𝑐) ∈ 𝐷𝑛.   

Hence the algebra homomorphism 𝑡∗ ∶ 𝐻𝑛(𝐷) → 𝐻𝑛(𝐴) is given by 𝑡∗[(𝑎, 𝑐)] = [𝑡𝑛(𝑎, 𝑐)] = 

[𝑎]for [(𝑎, 𝑐)] ∈  𝐻𝑛(𝐷). We note that 𝐻𝑛(𝐷) = 

𝑍𝑛(𝐷)⁄𝐵𝑛(𝐷) ⊂ (𝑍𝑛(𝐴) × 𝑍𝑛(𝐶) )⁄(𝐵𝑛(𝐴) × 𝐵𝑛(𝐶)).Hence 

𝐻𝑛(𝐷) = (𝑍𝑛(𝐴 ) × 𝑍𝑛(𝐶 ))⁄(𝐵𝑛(𝐴 ) × 𝐵𝑛(𝐶 )) 

for   some𝐴 𝑛   ⊂  𝐴𝑛 and   𝐶𝑛   ⊂  𝐶𝑛.  For  any   [(𝑎, 𝑐)] ∈  𝐻𝑛(𝐷)    we have [(𝑎, 𝑐)] = (𝑎, 𝑐) + 

𝐵𝑛(𝐷) =  (𝑎, 𝑐) +   (𝐵𝑛(𝐴 )  × 𝐵𝑛(𝐶 )),(𝑎, 𝑐)  ∈  𝑍𝑛(𝐷)  ⊂  𝐷𝑛. Then(𝑎, 𝑐) +  𝑑𝐷 (𝑎′, 𝑐′)  ∈ 

(𝑎, 𝑐) +  𝐵𝑛(𝐷), for every  𝑑𝐷 (𝑎′, 𝑐′) ∈  𝐵𝑛(𝐷)where (𝑎′, 𝑐′) ∈ 𝐷𝑛−1 ⊂ 𝐷𝑛, i.e., (𝑎, 𝑐) + 

𝑑𝐷 (𝑎′, 𝑐′) = (𝑎, 𝑐) +  (𝑑𝐴 (𝑎′),  𝑑𝐶 (𝑐′)) ∈ (𝑎, 𝑐) + (𝐵𝑛(𝐴 ) × 𝐵𝑛(𝐶 )), for 
𝑛−1 𝑛−1 𝑛−1 

every𝑑𝐷 (𝑎′, 𝑐′) = (𝑑𝐴 (𝑎′), 𝑑𝐴 (𝑐′)) ∈  𝐵𝑛(𝐴 ) × 𝐵𝑛(𝐶 ). Thus(𝑎 + 𝑑𝐴 (𝑎′), 𝑐 + 
𝑛−1 𝑛−1 𝑛−1 𝑛−1 

𝑑𝐶 (𝑐′)) ∈  (𝑎, 𝑐) + (𝐵𝑛(𝐴 ) × 𝐵𝑛(𝐶 )), i.e.,[(𝑎 + 𝑑𝐴 (𝑎′), 𝑐 +  𝑑𝐶 (𝑐′)]= [(𝑎, 𝑐)] ∈ 𝐻𝑛(𝐷). 
𝑛−1 𝑛−1 𝑛−1 

We note that  [𝑎] = [𝑎 + 𝑑𝐴 (𝑎′) ]and[𝑐] =  [𝑐 +  𝑑𝐶 (𝑐′)]. 
𝑛−1 𝑛−1 

Now let[(𝑎1, 𝑐1)], [(𝑎2, 𝑐2)] ∈ 𝐻𝑛(𝐷)and assume that 𝑡∗[(𝑎1, 𝑐1)] = 𝑡∗[(𝑎2, 𝑐2)]; this 

gives[𝑎1] = [𝑎2], i.e. [𝑎1 + 𝑑𝐴 (𝑎′)] = [𝑎2 + 𝑑𝐴 (𝑎′)]. 
𝑛−1 𝑛−1 

Since(𝑎1, 𝑐1), (𝑎2, 𝑐2), (𝑑𝐴 (𝑎′), 𝑑𝐶 (𝑐′)) ∈ 𝐷𝑛, we have 𝑓𝑛(𝑎1) = 𝑠𝑛(𝑐1), 𝑓𝑛(𝑎2) = 𝑠𝑛(𝑐2) 
𝑛−1 𝑛−1 

and𝑓𝑛𝑑𝐴 (𝑎′) =  𝑠𝑛 𝑑𝐶 (𝑐′). So𝑓𝑛(𝑎1 +  𝑑𝐴 (𝑎′)) =  𝑠𝑛(𝑐1 +  𝑑𝐶 (𝑐′)) and𝑓𝑛(𝑎2 + 
𝑛−1 𝑛−1 𝑛−1 𝑛−1 

𝑑𝐴 (𝑎′)) =  𝑠𝑛(𝑐2 +  𝑑𝐶 (𝑐′)). Therefore, from the above,𝑡∗[(𝑎1, 𝑐1)] = 𝑡∗[(𝑎2, 𝑐2)] 
𝑛−1 𝑛−1 

gives𝑓∗[𝑎1 + 𝑑𝐴 (𝑎′)] = 𝑓∗[𝑎1 +  𝑑𝐴 (𝑎′)], i.e.,[𝑓𝑛(𝑎1 +  𝑑𝐴 (𝑎′))] = [𝑓𝑛(𝑎2 + 
𝑛−1 𝑛−1 𝑛−1 
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𝑛−1 

𝑑𝐴 (𝑎′))];this  gives   [𝑠𝑛(𝑐1 +  𝑑𝐶 (𝑐′))] = [𝑠𝑛(𝑐2  +  𝑑𝐶 (𝑐′))],   i.e.,  𝑠∗[𝑐1 +  𝑑𝐶 (𝑐′)] = 
𝑛−1 𝑛−1 𝑛−1 𝑛−1 

𝑠∗[𝑐2 + 𝑑𝐶 (𝑐′)]. Since  𝑠∗   is an isomorphism we have  [𝑐1 +  𝑑𝐶 (𝑐′)] = [𝑐2 + 𝑑𝐶 (𝑐′)]. 
𝑛−1 𝑛−1 𝑛−1 

Hence we have([𝑎1 + 𝑑𝐴 (𝑎′)], [𝑐1 +  𝑑𝐶 (𝑐′)])= ([𝑎2 + 𝑑𝐴 (𝑎′)], [𝑐2 + 
𝑛−1 𝑛−1 𝑛−1 

 isomorphism𝛼∗ ∶ (𝑍𝑛(𝐴 )⁄𝐵𝑛(𝐴 )) × (𝑍𝑛(𝐶 )⁄𝐵𝑛(𝐶 )) → (𝑍𝑛(𝐴 ) × 𝑍𝑛(𝐶 ))⁄(𝐵𝑛(𝐴 ) × 𝐵𝑛(𝐶 ))to 

the  above to   get𝛼∗([𝑎1 + 𝑑𝐴 (𝑎′)], [𝑐1 +  𝑑𝐶 (𝑐′)]) = 𝛼∗([𝑎2 + 𝑑𝐴 (𝑎′)], [𝑐2 + 
𝑛−1 𝑛−1 𝑛−1 

𝑑𝐶 (𝑐′)]), i.e.,[(𝑎1 +  𝑑𝐴 (𝑎′), 𝑐1 +  𝑑𝐶 (𝑐′))] = [(𝑎2 + 𝑑𝐴 (𝑎′), 𝑐2 +  𝑑𝐶 (𝑐′))]. Thus 
𝑛−1 𝑛−1 𝑛−1 𝑛−1 𝑛−1 

[(𝑎1, 𝑐1)] = [(𝑎2, 𝑐2)], showing that 𝑡∗ ∶ 𝐻∗(𝐷) → 𝐻∗(𝐴)is a monomorphism. 

Next we show that 𝑡∗ ∶ 𝐻∗(𝐷) → 𝐻∗(𝐴)  is  anepimorphism.Let[𝑎] ∈  𝐻∗(𝐴)  be arbitrary. 

Then 𝑓𝑛(𝑎) ∈ 𝐵𝑛. Since 𝑠 is  an  epimorphism  𝑓𝑛(𝑎)  =  𝑠𝑛(𝑐)  for  some  𝑐  ∈  𝐶𝑛. Hence (𝑎, 𝑐)  ∈  

𝐷𝑛.  Then𝑡∗[(𝑎, 𝑐)] = [𝑡𝑛(𝑎, 𝑐)]  = [𝑎]showing  𝑡∗  is an epimorphism.  Since  𝑡 is an 

epimorphism and 𝑡∗ is an isomorphism we conclude that𝑡 ∈ 𝑆. 

Next  for  any  d.g.a.  𝐸 = Σ 𝐸𝑛and d.g.a.-homomorphisms𝑢 = {𝑢𝑛 ∶ 𝐸𝑛 → 𝐴𝑛}and𝑣 = 
𝑛≥0 

{𝑣𝑛 ∶ 𝐸𝑛 → 𝐶𝑛}in𝒟𝒢𝒜, let the following diagram 
 
 

𝑢 

𝐸 → 𝐴 
 

𝑣 ↓ ↓ 𝑓 
 

𝐶 → 𝐵 
𝑠 

Figure 10 

commute, i.e., 𝑓𝑢 = 𝑠𝑣. Consider the diagram 

𝐸 
↘ 𝑢 

↘ ℎ 
𝑡 

𝐷 → 𝐴 
 

𝑣 ↘ 𝑔 ↓ ↓ 𝑓 
 

𝐶 
 

Figure 11 

→ 𝐵 
𝑠 

Define ℎ = {ℎ𝑛  ∶  𝐸𝑛 →  𝐷𝑛}by the ruleℎ(𝑥) = (𝑢(𝑥), 𝑣(𝑥))for 𝑥  ∈ 𝐸. Clearly  ℎ  is well  

defined  and  is  a  d.g.a.  homomorhism.  Now  for  any  𝑥   ∈ 𝐸,𝑡ℎ(𝑥) = 𝑡(𝑢(𝑥), 𝑣(𝑥)) = 
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𝑢(𝑥)and𝑔ℎ(𝑥) = 𝑔(𝑢(𝑥), 𝑣(𝑥)) = 𝑣(𝑥), i.e.,𝑡ℎ = 𝑢and𝑔ℎ = 𝑣. This completes the proof of 

Proposition 3.2.∎ 

3.3 Proposition. 

If each𝑠𝑖 ∶ 𝐴𝑖 → 𝐵𝑖,𝑖 ∈ 𝐼,is an element of𝑆, where the index set𝐼is an element of𝒰, 

then  ∏𝑖∈𝐼 𝑠𝑖 ∶ ∏𝑖∈𝐼 𝐴𝑖   → ∏𝑖∈𝐼 𝐵𝑖is an element of𝑆. 
 

Proof. The proof is trivial.  
 

The following result can be obtained from the above discussion. 
 

3.4 Proposition. The category𝒟𝒢𝒜is complete. 
 

From Propositions 3.1- 3.4, it follows that the conditions of Theorem 2.10 are fulfilled 

and by the use of Theorem 2.13, we obtain the following result. 

3.5 Theorem. 

Every object𝐴of the category 𝒟𝒢𝒜 has an Adams cocompletion  𝐴𝑆  with respect to the 

set of morphisms 𝑆 and there exists a morphism𝑒 ∶  𝐴𝑆  → 𝐴in 𝑆  which is couniversal with  

respect to the morphisms in𝑆, that is, given a morphism𝑠 ∶ 𝐵 → 𝐴in𝑆 there exists a unique 

morphismt ∶ AS → Bsuch that st = e. In other words the following diagram is commutative: 

𝑒 

𝐴𝑆 → 𝐴 
 

𝑡 ↓ ↗ 𝑠 
 

𝐵 

Figure 12 

4. Minimal model 

We recall the following algebraic preliminaries. 
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4.1 Definition. Deschner, 1975, Wu, 1980 

A d.g.a. 𝑀 is called a minimal algebra if it satisfies the following properties: 

 𝑀is free as a graded algebra. 

 𝑀has decomposable differentials. 

 𝑀0  =   ℚ, 𝑀1  = 0. 

 𝑀has homology of finite type, i.e., for each𝑛, 𝐻𝑛(𝑀) is a finite dimensionalvector 

space. 

Let ℳ be the full subcategory of the category 𝒟𝒢𝒜 consisting of all minimal algebras 

and all d.g.a.-maps between them. 

4.2 Definition. Deschner, 1975, Wu, 1980 

Let𝐴be a simply connected d.g.a..A d.g.a.𝑀 = 𝑀𝐴is called a minimal model of 𝐴 if the 

following conditions hold: 

(i) 𝑀𝐴 ∈ ℳ. 

(ii) Thereis a d.g.a.-map𝜌 ∶ 𝑀𝐴 → 𝐴which induces an isomorphism on homology, 

≅ 

i.e.,𝜌∗ ∶ 𝐻∗(𝑀𝐴) → 𝐻∗(𝐴). 

Henceforth we assume that the d.g.a.-map𝜌 ∶ 𝑀𝐴 → 𝐴is a d.g.a.-epimorphism. 

4.3 Theorem.Deschner, 1975, Wu, 1980 

LetAbe a simply connected d.g.a.  andMA  be its  minimal model.  The mapρ ∶ MA  →  

Ahas couniversal property, i.e., for any d.g.a. Zand d.g.a.-mapφ ∶ Z → A,there exists a d.g.a.-  

map θ ∶ MA → Zsuch that ρ  ≃ φθ;  furthermore  if  the  d.g.a.-map  φ  ∶ Z  → Ais  an  

epimorphism thenρ = φθ, i.e., the following diagram is commutative: 

𝜌 

𝑀𝐴 → 𝐴 
 

𝜃 ↓ ↗ 𝜑 
 

𝑍 

Figure 13 
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5. The result 

We show that under a reasonable assumption,the minimal model of a 1-connected d.g.a. 

can be expressed as the Adams cocompletion of the d.g.a. with respect to the chosen set of d.g.a.- 

maps. 

5.1 Theorem. 𝑀𝐴 ≅ 𝐴𝑆. 

Proof. Let 𝑒 ∶ 𝐴𝑆 → 𝐴be the map as in Theorem 3.5 and𝜌 ∶ 𝑀𝐴 → 𝐴be the d.g.a.-map as in  

Theorem 4.3. Since the d.g.a.-map 𝜌 ∶ 𝑀𝐴 → 𝐴 is a d.g.a.-epimorphism, by the couniversal 

property of 𝑒 there exists a d.g.a.-map 𝜃 ∶ 𝐴𝑆 → 𝑀𝐴 such that 𝑒 = 𝜌𝜃. 

 

𝐴𝑆 
𝑒 

→ 𝐴 
 

𝜃 ↓ ↗ 𝜌 
 

𝑀𝐴 

Figure 14 
 

By the couniversal property of 𝜌there exists a d.g.a.-map𝜑 ∶ 𝑀𝐴 → 𝐴𝑆such that𝑒𝜑 = 𝜌. 
 
 

𝑀𝐴 
𝜌 

→ 𝐴 
 

𝜑 ↓ ↗ 𝑒 
 

 
 
 

Consider the diagram 

𝐴𝑆  

Figure 15 
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𝐴𝑆 
𝑒 

→ 𝐴 
 

𝜃 ↓ 
 

1𝐴𝑆   ↓ 𝑀𝐴 ↗ 𝑒 

 
𝜑 ↓ 

 
𝐴𝑆 

Figure 16 

 
 

Thus we have𝑒𝜑𝜃  =  𝜌𝜃 =  𝑒 .By the uniqueness condition of the couniversal property  

of 𝑒 (Theorem 3.5), we conclude that𝜑𝜃 = 1𝐴𝑆.Next consider the diagram 

 

𝑀𝐴 
𝜌 

→ 𝐴 
 

𝜑 ↓ 

 
1𝑀𝐴  ↓ 𝐴𝑆 ↗ 𝜌 

 
𝜃 ↓ 

 
𝑀𝐴 

Figure 17 

 
 

Thus we have𝜌𝜃𝜑 = 𝑒𝜑 = 𝜌. By the couniversal oroperty of 𝜌 (Theorem 4.3), we 

conclude that𝜃𝜑 = 1𝑀𝐴.Thus𝑀𝐴 ≅ 𝐴𝑆. This completes the proof of Theorem 5.1. 
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