MATTER: International Journal of Science and Technology ISSN 2454-5880

Behera et al., 2015
Volume 1 Issue 1, pp.48-63.
Year of Publication: 2015
DOI- http://dx.doi.org/10.20319/mijst.2016.s11.4863
This paper can be cited as: Behera, A., Choudhury, S., \& Routaray, M. (2015). A Categorical Construction of Minimal Model. MATTER: International Journal of Science and Technology, 1(1), 48-63.

This work is licensed under the Creative Commons Attribution-Non-commercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

A CATEGORICAL CONSTRUCTION OF MINIMAL MODEL

A. Behera
Department of Mathematics, National Institute of Technology, Rourkela - 769008 India abehera@nitrkl.ac.in
S. B. Choudhury
Department of Mathematics, National Institute of Technology, Rourkela - 769008 India
512ma6009@nitrkl.ac.in

M. Routaray

Department of Mathematics, National Institute of Technology, Rourkela - 769008 India 512ma302@nitrkl.ac.in

Abstract

Deleanu, Frei and Hilton have developed the notion of generalized Adams completion in a categorical context; they have also suggested the dual notion, namely, Adams cocompletion of an object in a category. The concept of rational homotopy theory was first characterized by Quillen. In fact in rational homotopy theory Sullivan introduced the concept of minimal model. In this note under a reasonable assumption, the minimal model of a 1-connected differential graded algebra can be expressed as the Adams cocompletion of the differential graded algebra with respect to a chosen set in the category of 1-connected differential graded algebras (in short d.g.a.'s) over the field of rationales and d.g.a.-homomorphisms.

Keywords

Category of Fractions, Calculus of Right Fractions, Grothendieck Universe, Adams cocompletion, Differential Graded Algebra, Minimal Model.

1. Introduction

It is to be emphasized that many algebraic and geometrical constructions in Algebraic Topology, Differential Topology, Differentiable Manifolds, Algebra, Analysis, Topology, etc., can be viewed as Adams completions or cocompletions of objects in suitable categories, with respect to carefully chosen sets of morphisms.

The notion of generalized completion (Adams completion) arose from a categorical completion process suggested by Adams, 1973, 1975. Originally this was considered for admissible categories and generalized homology (or cohomology) theories. Subsequently, this notion has been considered in a more general framework by Deleanu, Frei \& Hilton, 1974, where an arbitrary category and an arbitrary set of morphisms of the category are considered; moreover they have also suggested the dual notion, namely the cocompletion (Adams cocompletion) of an object in a category.

The central idea of this note is to investigate a case showing how an algebraic geometrical construction is characterized in terms of Adams cocompletion.

2. Adams completion

We recall the definitions of Grothendieck universe, category of fractions, calculus of right fractions, Adams cocompletion and some characterizations of Adams cocompletion.
2.1 Definition. Schubert, 1972

A Grothendeick universe (or simply universe) is a collection \mathcal{U} of sets such that the following axioms are satisfied:
$\mathrm{U}(1)$: If $\left\{X_{i}: i \in I\right\}$ is a family of sets belongingto \mathcal{U}, then $\bigcup_{i \in \mathrm{I}} X_{i}$ is an element of \mathcal{U}.
U (2): If $x \in \mathcal{U}$, then $\{x\} \in \mathcal{U}$.
U (3): If $x \in X$ and $X \in \mathcal{U}$ then $x \in \mathcal{U}$.
$\mathrm{U}(4)$: If X is a set belonging to \mathcal{U}, then $P(X)$, the power set of X, is an element of \mathcal{U}.
U (5): If X and Y are elements of \mathcal{U}, then $\{X, Y\}$, the ordered pair (X, Y) and $X \times Y$ are elements of \mathcal{U}.

We fix a universe \mathcal{U} that contains \mathbb{N} the set of natural numbers (and so $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$).
2.2 Definition. Schubert, 1972

A category \mathcal{C} is said to be a small U-category, \mathcal{U} being a fixed Grothendeick universe, if the following conditions hold:
$\mathrm{S}(1)$: \quad The objects of \mathcal{C} form a set which is an element of \mathcal{U}.
S (2): For each pair (X, Y) of objects of \mathcal{C}, the set $\operatorname{Hom}(X, Y)$ is an element of \mathcal{U}.
2.3 Definition. Schubert, 1972

Let \mathcal{C} be any arbitrary category and S a set of morphisms of \mathcal{C}. A category of fractions of \mathcal{C} with respect to S is a category denoted by $\mathcal{C}\left[S^{-1}\right]$ together with a functor $F_{S}: \mathcal{C} \rightarrow$ $\mathcal{C}\left[S^{-1}\right]$ having the following properties:

CF (1): For each $s \in S, F_{S}(s)$ is an isomorphism inC [$\left.S^{-1}\right]$.
$\mathrm{CF}(2): F_{\text {sis }}$ universal with respect to this property:If $G: \mathcal{C} \rightarrow \mathcal{D}$ is a functor such that $G(s)$ is an isomorphism in \mathcal{D}, foreachs $\in S$,then there exists a unique functor $H: \mathcal{C}\left[S^{-1}\right] \rightarrow \mathcal{D}$ such that $G=H F$. Thus we have the following commutative diagram:

Figure 1

2.4 Note.

For the explicit construction of the category $\mathcal{C}\left[S^{-1}\right]$, we refer to Schubert, 1972. We content ourselves merely with the observation that the objects of $\mathcal{C}\left[S^{-1}\right]$ are same as those of \mathcal{C} and in the case when S admits a calculus of left (right) fractions, the category $\mathcal{C}\left[S^{-1}\right]$ can be described very nicely Gabriel \&Zisman, 1967, Schubert, 1972.
2.5 Definition. Schubert, 1972

A family S of morphisms in a category \mathcal{C} is saidto admit a calculus of right fractions if
(a) any diagram

Figure 2
inCwith $s \in S$ can be completed to a diagram

W	$\stackrel{t}{\rightarrow}$	X
$g \downarrow$		$\downarrow f$
Z	$\underset{s}{\rightarrow}$	Y

Figure 3
with $t \in \operatorname{Sand} f t=s g$,
(b) given $W \xrightarrow{t} X \underset{g}{\underset{g}{f}} Y \xrightarrow{s}$ Zwiths $\in \operatorname{Sands} f=s g$,there \quad is \quad a morphism t :

$$
W \rightarrow X \text { in } S \text { such that } f t=g t .
$$

A simple characterization for a family S to admit a calculus of right fractions is the following.
2.6 Theorem. Deleanu, et al., 1974

Let S be a closed family of morphisms ofCsatisfying
(a) if $v u \in S$ and $v \in S$, then $u \in S$,
(b) any diagram

Figure 4
inC with $s \in S$, can be embedded in a weak pull-back diagram

Figure 5
witht $\in S$.
Then S admits a calculus of right fractions.

2.7 Remark.

There are some set-theoretic difficulties in constructing the category $\mathcal{C}\left[S^{-1}\right]$; these difficulties may be overcome by making some mild hypotheses and using Grothendeick universes. Precisely speaking, the main logical difficulty involved in the construction of a category of fractions and its use, arises from the fact that if the category \mathcal{C} belongs to a particular universe, the category $\mathcal{C}\left[S^{-1}\right]$ would, in general belongs to a higher universe Schubert, 1972. In most applications, however, it is necessary that we remain within the given initial universe. This logical difficulty can be overcome by making some kind of assumptions which would ensure that the category of fractions remains within the same universe Deleanu, 1975. Also the following theorem shows that if S admits a calculus of left (right) fractions, then the category of fractions $\mathcal{C}\left[S^{-1}\right]$ remains within the same universe as to the universe to which the category \mathcal{C} belongs.
2.8 Theorem. Nanda, 1980

Let \mathcal{C} be a small \mathcal{U}-category and S a set of morphisms of \mathcal{C} that admits a calculus of left (right) fractions. Then $\mathcal{C}\left[S^{-1}\right]$ is a small U-category.

2.9 Definition. Deleanu, et al., 1974

Let \mathcal{C} be an arbitrary category and S a set of morphisms of \mathcal{C}. Let $\mathcal{C}\left[S^{-1}\right]$ denote the category of fractions of \mathcal{C} with respectSand $F: \mathcal{C} \rightarrow \mathcal{C}\left[S^{-1}\right]$ be the canonical functor. Let \mathcal{S} denote the category of sets and functions. Then for a given object Y of $\mathcal{C}, \mathcal{C}\left[S^{-1}\right](Y,-): \mathcal{C} \rightarrow$
\mathcal{S} defines a covariant functor. If this functor is representable by an object Y_{S} ofC \mathcal{C}, i.e., $\mathcal{C}\left[S^{-1}\right](Y,-) \cong \mathcal{C}\left(Y_{S},-\right)$.Then Y_{S} is called the (generalized)Adams cocompletionof Y with respect to the set of morphisms S or simply the S-cocompletion of Y. We shall often refer to Y_{S} as the cocompletion of Y Deleanu, et al., 1974.

We recall some results on the existence of Adams cocompletion. We state Deleanu'stheoremDeleanu, 1975 that under certain conditions, global Adams cocompletion of an object always exists.
2.10 Theorem. Deleanu, 1975

Let Cbe a complete smallU-category (Uis a fixed Grothendeick universe) andSa set of morphisms ofCthat admits a calculus of right fractions. Suppose that the following compatibility condition with product is satisfied: if eachs ${ }_{i}: X_{i} \rightarrow Y_{i}, i \in I$, is an element of U, then $\prod_{i \in I} s_{i}: \quad \prod_{i \in I} X_{i} \rightarrow \quad \prod_{i \in I} Y_{i}$ is an element of S.Then every objectXof Chas an Adams cocompletion $X_{\text {swith }}$ respect to the set of morphismsS.

The concept of Adams cocompletion can be characterized in terms of a couniversal property.
2.11 Definition. Deleanu, et al., 1974

Given aset S of morphisms of \mathcal{C}, we define S, the saturation of S as the set of all morphisms u in \mathcal{C} such that $F(u)$ is an isomorphism in $\mathcal{C}\left[S^{-1}\right]$. Sis said to be saturated if $S=S$.
2.12 Proposition. Deleanu, et al., 1974

A family S of morphisms ofCis saturated if and only if thereexists a factor $F: \mathcal{C} \rightarrow$ \mathcal{D} such thatSis the collection of morphismsfsuch thatFf is invertible.

Deleanu, Frei and Hilton have shown that if the set of morphisms S is saturated then the Adams cocompletion of a space is characterized by a certain couniversal property.
2.13 Theorem. Deleanu, et al., 1974

Let S be a saturated family of morphisms of \mathcal{C} admitting a calculus of right fractions. Then an object Y_{S} of \mathcal{C} is the S-cocompletion of the object Y with respect to S if and only if there exists a morphisme $: Y_{S} \rightarrow$ Yin Swhich is couniversal with respect to morphisms of S : given a morphisms : $Z \rightarrow$ Yin Sthere exists a unique morphismt $: Y_{S} \rightarrow$ Zin S such thatst $=e$. In other words, the following diagram is commutative:

Y_{S}	\xrightarrow{e}	Y
t_{\downarrow}		$\nearrow s$

Z
Figure 6
For most of the application it is essential that the morphism $\quad e: Y_{S} \rightarrow Y$ has to be in S; this is the case when S is saturated and the result is as follows:

2.14 Theorem. Deleanu, et al., 1974

Let S be a saturated family of morphisms of \mathcal{C} and let every object of \mathcal{C} admit an S-cocompletion. Then the morphism $e: Y_{S} \rightarrow Y$ belongs to S and is universal for morphisms to S-cocomplete objects and couniversal for morphisms in S.

3. The category $\mathcal{D G} \boldsymbol{\mathcal { A }}$

Let $\mathcal{D G} \mathcal{A}$ be the category of 1-connected differential graded algebras over \mathbb{Q} (in short d.g.a.) and d.g.a.-homomorphisms. Let S denote the set of all d.g.a.-epimorphisms in $\mathcal{D} \mathcal{G} \mathcal{A}$ which induce homology isomorphisms in all dimensions. The following results will be required in the sequel.

3.1 Proposition.

SIs saturated.
Proof. The proof is evident from Proposition 2.12.

3.2Proposition.

Sadmits a calculus of right fractions.

Proof. Clearly, S is a closed family of morphisms of the category $\mathcal{D} \mathcal{G} \mathcal{A}$. We shall verify conditions (a) and (b) of Theorem 2.6. Let $u, v \in S$. We show that if $v u \in S$ and $v \in S$, then $u \in S$. Clearly u is an epimorphism. We have $(v u)_{*}=v_{*} u_{*}$ and v_{*} are both homology isomorphisms implying u_{*} is a homology isomorphism. Thus $u \in S$. Hence condition (a) of Theorem 2.6 holds.

To prove condition (b) of Theorem 2.6 consider the diagram

Figure 7
$\operatorname{In} \mathcal{D} \mathcal{A} \mathcal{A}$ with $\in S$.We assert that the above diagram can be completed to a weak pull-back diagram

Figure 8
In $\mathcal{D} \mathcal{G} \mathcal{A}$ withs $\in S$. Since A, B andCare $\operatorname{in} \mathcal{D} \mathcal{A} \mathcal{A}$ we write $A=\sum_{n \geq 0} A_{n}, B=\sum_{n \geq 0} B_{n}, C=$ $\Sigma_{n \geq 0} C_{n}, f=\Sigma_{n \geq 0} f_{n, s}=\Sigma_{n \geq 0} S_{n}$ and $f_{n}: A_{n} \rightarrow B_{n, S_{n}}: C_{n} \rightarrow B_{n}$, are d.g.a.-homomorphisms. Let $D_{n}=\left\{(a, c) \in A_{n} \times C_{n}: f_{n}(a)=s_{n}(c)\right\} \subset A_{n} \times C_{n}$.

We have to show that $D=\Sigma_{n \geq 0} D_{n}$ is a differential graded algebra. Lett $t_{n}: D_{n} \rightarrow$ A_{n} and $g_{n}: D_{n} \rightarrow C_{n}$ be the usual projections. Lett $=\Sigma_{n \geq 0} t_{n}$ and $g=\sum_{n \geq 0} g_{n}$. Clearly the above diagram is commutative. It is required to show that D is a d.g.a..Define a multiplication in D in the following way: $(a, c) \cdot\left(a^{\prime}, c^{\prime}\right)=\left(a a^{\prime}, c c^{\prime}\right)$, where $(a, c) \in D_{n},\left(a^{\prime}, c^{\prime}\right) \in D_{m}$.Let $d^{A}=\Sigma_{n \geq 0} d_{n}^{A} \quad d_{n}^{A}: A_{n} \rightarrow A_{n+1}$ and $d^{C}=\Sigma_{n \geq 0} d_{n}^{C}, d_{n}^{C}: C_{n} \rightarrow C_{n+1}$. Define $\quad d_{n}^{D}: D_{n} \rightarrow$
D_{n+1} by the rule $\left.d_{n}^{D}(a, c)=\left(d^{A}{ }_{2} a\right), d^{C}\left({ }_{(2} c\right)\right)$,
$(a, c) \in D_{n} \cdot$ Let $d^{D}=\sum_{n \geq 0} d^{D}{ }_{n} \operatorname{Since} d^{D} d^{D}(a, c)=\left(d^{A} d^{A}(a), d^{C} d^{C}(c)\right)=(0,0)$ for all $(a, c) \in D$ we have that d^{D} is a differential. Next we show that d^{D} is a derivation: For $\left(a_{1}, c_{1}\right) \in D_{n}$
$\operatorname{and}\left(a_{2}, c_{2}\right) \in D_{m}, d^{D}\left(\left(a_{1}, c_{1}\right) \cdot\left(a_{2}, c_{2}\right)\right)=d^{D}\left(a_{1} a_{2}, c_{1} c_{2}\right)=\left(d^{A}\left(a_{1} a_{2}\right), d^{C}\left(c_{1} c_{2}\right)\right)=$ $\left(d^{A}\left(a_{1}\right) \cdot\left(a_{2}\right)+(-1)^{n}\left(a_{1}\right) \cdot d^{A}\left(a_{2}\right), d^{C}\left(c_{1}\right) \cdot\left(c_{2}\right)+(-1)^{n}\left(c_{1}\right) \cdot d^{C}\left(c_{2}\right)\right)=\left(d^{A}\left(a_{1}\right) \cdot a_{2}\right.$, $\left.d^{C}\left(c_{1}\right) \cdot c_{2}\right)+\left((-1)^{n} a_{1} \cdot d^{A}\left(a_{2}\right),(-1)^{n} C_{1} \cdot d^{C}\left(c_{2}\right)\right)=\left(d^{A}\left(a_{1}\right)\right.$, $\left.d^{C}\left(c_{1}\right)\right) \cdot\left(a_{2}, c_{2}\right)+\left((-1)^{n} a_{1},(-1)^{n} c_{1}\right) \cdot\left(d^{A}\left(a_{2}\right), d^{C}\left(c_{2}\right)\right)=d^{D}\left(a_{1}, c_{1}\right) \cdot\left(a_{2}, c_{2}\right)+$ $(-1)^{n}\left(a_{1}, c_{1}\right) \cdot d^{D}\left(a_{2}, c_{2}\right)$.

Thus D becomes a d.g.a..
We show that D is 1 -connected, i.e., $H_{0}(D) \cong \mathbb{Q} \operatorname{and} H_{1}(D) \cong 0$. We have $H_{0}(D)=$ $Z_{0}(D) / B_{0}(D)=Z_{0}(D)=\left\{(a, c) \in Z_{0}(A) \times Z_{0}(C): f_{0}(a)=s_{0}(c)\right\}$.Let $\quad 1_{A} \in A \quad$ and $1_{C} \in C . \operatorname{Thend}^{D}\left(1_{A}, 1_{C}\right)=\left(d^{A}\left(1_{A}\right), d^{C}\left(1_{C}\right)\right)=0$ implies that $\left(1_{A}, 1_{C}\right) \in Z_{0}(D) \cdot H_{0}(A)=$ $Z_{0}(A) \cong \mathbb{Q}$ implies that $Z_{0}(A)=\mathbb{Q} 1_{A}$.Similarly, $H_{0}(C)=Z_{0}(C) \cong \mathbb{Q}$ implies that $Z_{0}(C)=$ $\mathbb{Q} 1_{c}$.Thus $(a, c) \in H_{0}(D)=Z_{0}(D) \subset Z_{0}(A) \times Z_{0}(C)$ if and only if $a=r 1_{A}$ and $c=r 1_{C}$ for some $r \in \mathbb{Q}$. $\operatorname{Thus}_{0}(D) \cong \mathbb{Q}$.

In order to $\operatorname{show} H_{1}(D) \cong 0, \operatorname{let}(a, c) \in Z_{1}(D)$. This implies that $a \in Z_{1}(A), c \in$ $Z_{1}(C)$ and $f_{1}(a)=s_{1}(c)$. SincAis 1 -connected we have $H_{1}(A) \cong 0$, i.e., $Z_{1}(A) / B_{1}(A)=B_{1}(A) ;$ hence $\quad a=d_{0}^{A}\left(a^{\prime}\right), a^{\prime} \in A_{0}$. Similarly since C is 1 -connected we have $H_{1}(C) \cong 0$, i.e., $Z_{1}(C) / B_{1}(C)=B_{1}(C)$;hence $c=d^{C}\left(\underset{0}{c^{\prime}}\right), c^{\prime} \in C_{0}$. Now $f_{1}(a)=s_{1}(c)$,i.e., $f_{1}\left(d^{A}\left(a^{\prime}\right)\right)=$ $s_{1}\left(\underset{0}{d^{C}}\left(c^{\prime}\right)\right)$.This $\quad \operatorname{gives} d_{0}^{B} f_{0}\left(a^{\prime}\right)=d_{0}^{B} S_{0}\left(c^{\prime}\right)$,i.e., $d^{B}\left(f_{0}\left(a^{\prime}\right)-s_{0}\left(c^{\prime}\right)\right)=0 . T h u s f_{0}\left(a^{\prime}\right)-$ $s_{0}\left(c^{\prime}\right) \in Z_{0}(B)$.But $s \in S$. Hence $s_{*}: H_{0}(C) \rightarrow H_{0}(B) \quad$ is an isomorphism, i.e., $s_{0}:$ $Z_{0}(C) \rightarrow Z_{0}(B)$ is an isomorphism. Hence there exists an element $\tilde{c} \in Z_{0}(C)$ such that $s_{0}(\tilde{c})=f_{0}\left(a^{\prime}\right)-s_{0}\left(c^{\prime}\right)$.Moreover $\quad d_{0}^{D}\left(a^{\prime}, \tilde{c}+c^{\prime}\right)=\left(d_{0}^{A}\left(a^{\prime}\right), d^{C}(\underset{0}{\tilde{c}})+d^{C}\left(c^{\prime}\right)\right)=\left(d^{A}\left(a^{\prime}\right)\right.$, $\left.0+d_{0}^{C}\left(c^{\prime}\right)\right)=\left(d_{0}^{A}\left(a^{\prime}\right), d^{C}\left(c^{\prime}\right)=(a, c)\right.$ showing that $(\mathrm{a}, \mathrm{c}) \in B_{1}(D)$. Thus $H_{1}(D) \cong 0$.

Clearly tis a d.g.a.-epimorphism. We show thatt $t_{*} H_{*}(D) \rightarrow H_{*}(A)$ is an isomorphism. First we show that $t_{*}: H_{*}(D) \rightarrow H_{*}(A)$ is a monomorphism. The hollowing commutative diagram will be used in the sequel.

Figure 9
Since $t_{n}: D_{n} \rightarrow A_{n}$ is the usual projection, we have $t_{n}(a, c)=a$ for every $(a, c) \in D_{n}$. Hence the algebra homomorphism $t_{*}: H_{n}(D) \rightarrow H_{n}(A)$ is given by $t_{*}[(a, c)]=\left[t_{n}(a, c)\right]=$ $[a]$ for $\quad[(a, c)] \in H_{n}(D)$ We note that $H_{n}(D)=$ $Z_{n}(D) / B_{n}(D) \subset\left(Z_{n}(A) \times Z_{n}(C)\right) /\left(B_{n}(A) \times B_{n}(C)\right)$. Hence
$H_{n}(D)=\left(Z_{n}(A) \times Z_{n}(C)\right) /\left(B_{n}(A) \times B_{n}(C)\right)$
for some $A_{n} \subset A_{n}$ and $C_{n} \subset C_{n}$. For any $[(a, c)] \in H_{n}(D)$ we have $[(a, c)]=(a, c)+$ $B_{n}(D)=(a, c)+\left(B_{n}(A) \times B_{n}(C)\right),(a, c) \in Z_{n}(D) \subset D_{n} . \quad$ Then $(a, c)+d_{n-1}^{D}\left(a^{\prime}, c^{\prime}\right) \in$ $(a, c)+B_{n}(D)$, for every $d_{n-1}^{D}\left(a^{\prime}, c^{\prime}\right) \in B_{n}(D)$ where $\quad\left(a^{\prime}, c^{\prime}\right) \in D_{n-1} \subset D_{n}$, i.e., $(a, c)+$ $d_{n-1}^{D}\left(a^{\prime}, c^{\prime}\right) \quad=\quad(a, c)+\left(d_{n-1}^{A}\left(a^{\prime}\right), d_{n-1}^{C}\left(c^{\prime}\right)\right) \in(a, c)+\left(B_{n}(A) \times B_{n}(C)\right)$, for $\operatorname{everyd}_{n-1}^{D}\left(a^{\prime}, c^{\prime}\right)=\left(d_{n-1}^{A}\left(a^{\prime}\right), d_{n-1}^{A}\left(c^{\prime}\right)\right) \in B_{n}(A) \times B_{n}(C) . \quad \operatorname{Thus}\left(a+d_{n-1}^{A}\left(a^{\prime}\right), c+\right.$ $\left.d_{n-1}^{C}\left(c^{\prime}\right)\right) \in(a, c)+\left(B_{n}(A) \times B_{n}(C)\right)$, i.e., $\left[\left(a+d_{n-1}^{A}\left(a^{\prime}\right), c+d_{n-1}^{C}\left(c^{\prime}\right)\right]=[(a, c)] \in H_{n}(D)\right.$.
We note that $[a]=\left[a+d_{n-1}^{A}\left(a^{\prime}\right)\right] \operatorname{and}[c]=\left[c+d_{n-1}^{C}\left(c^{\prime}\right)\right]$.
Now let $\left[\left(a_{1}, c_{1}\right)\right],\left[\left(a_{2}, c_{2}\right)\right] \in H_{n}(D)$ and assume that $t_{*}\left[\left(a_{1}, c_{1}\right)\right]=t_{*}\left[\left(a_{2}, c_{2}\right)\right]$; this $\operatorname{gives}\left[a_{1}\right]=\left[a_{2}\right], \quad \quad$ i.e. $\quad\left[a_{1}+d_{n-1}^{A}\left(a^{\prime}\right)\right]=\left[a_{2}+d_{n-1}^{A}\left(a^{\prime}\right)\right]$. $\operatorname{Since}\left(a_{1}, c_{1}\right),\left(a_{2}, c_{2}\right),\left(d_{n-1}^{A}\left(a^{\prime}\right), d_{n-1}^{C}\left(c^{\prime}\right)\right) \in D_{n}$, we have $f_{n}\left(a_{1}\right)=s_{n}\left(c_{1}\right), f_{n}\left(a_{2}\right)=s_{n}\left(c_{2}\right)$ $\operatorname{and} f_{n} d_{n-1}^{A}\left(a^{\prime}\right)=s_{n} d_{n-1}^{C}\left(c^{\prime}\right) . \quad \operatorname{Sof} f_{n}\left(a_{1}+d_{n-1}^{A}\left(a^{\prime}\right)\right)=s_{n}\left(c_{1}+d_{n-1}^{C}\left(c^{\prime}\right)\right) \quad \operatorname{and} f_{n}\left(a_{2}+\right.$ $\left.d_{n-1}^{A}\left(a^{\prime}\right)\right)=s_{n}\left(c_{2}+d_{n-1}^{C}\left(c^{\prime}\right)\right)$. Therefore, from the above, $t_{*}\left[\left(a_{1}, c_{1}\right)\right]=t_{*}\left[\left(a_{2}, c_{2}\right)\right]$ $\operatorname{gives} f_{*}\left[a_{1}+d_{n-1}^{A}\left(a^{\prime}\right)\right]=f_{*}\left[a_{1}+d_{n-1}^{A}\left(a^{\prime}\right)\right], \quad \quad$ i.e., $\left[f_{n}\left(a_{1}+d_{n-1}^{A}\left(a^{\prime}\right)\right)\right]=\left[f_{n}\left(a_{2}+\right.\right.$
$\left.\left.d_{n-1}^{A}\left(a^{\prime}\right)\right)\right]$;this gives $\left[s_{n}\left(c_{1}+d_{n-1}^{C}\left(c^{\prime}\right)\right)\right]=\left[s_{n}\left(c_{2}+d_{n-1}^{c}\left(c^{\prime}\right)\right)\right]$, i.e., $s_{*}\left[c_{1}+d_{n-1}^{C}\left(c^{\prime}\right)\right]=$ $s_{*}\left[c_{2}+d_{n-1}^{C}\left(c^{\prime}\right)\right]$. Since s_{*} is an isomorphism we have $\left[c_{1}+d_{n-1}^{C}\left(c^{\prime}\right)\right]=\left[c_{2}+d_{n-1}^{c}\left(c^{\prime}\right)\right]$.

Hence we $\operatorname{have}\left(\left[a_{1}+d_{n-1}^{A}\left(a^{\prime}\right)\right],\left[c_{1}+d_{n-1}^{C}\left(c^{\prime}\right)\right]\right)=\quad\left(\left[a_{2}+d_{n-1}^{A}\left(a^{\prime}\right)\right],\left[c_{2}+\right.\right.$ isomorphism $\alpha_{*}:\left(Z_{n}(A) / B_{n}(A)\right) \times\left(Z_{n}(C) / B_{n}(C)\right) \rightarrow\left(Z_{n}(A) \times Z_{n}(C)\right) /\left(B_{n}(A) \times B_{n}(C)\right)$ to the above to $\operatorname{get} \alpha_{*}\left(\left[a_{1}+d_{n-1}^{A}\left(a^{\prime}\right)\right],\left[c_{1}+d_{n-1}^{C}\left(c^{\prime}\right)\right]\right)=\alpha_{*}\left(\left[a_{2}+d_{n-1}^{A}\left(a^{\prime}\right)\right],\left[c_{2}+\right.\right.$ $\left.\left.d_{n-1}^{C}\left(c^{\prime}\right)\right]\right)$, i.e., $\left[\left(a_{1}+d_{n-1}^{A}\left(a^{\prime}\right), c_{1}+d_{n-1}^{C}\left(c^{\prime}\right)\right)\right]=\left[\left(a_{2}+d_{n-1}^{A}\left(a^{\prime}\right), c_{2}+d_{n-1}^{C}\left(c^{\prime}\right)\right)\right]$. Thus $\left[\left(a_{1}, c_{1}\right)\right]=\left[\left(a_{2}, c_{2}\right)\right]$, showing that $t_{*}: H_{*}(D) \rightarrow H_{*}(A)$ is a monomorphism.

Next we show that $t_{*}: H_{*}(D) \rightarrow H_{*}(A)$ is anepimorphism.Let $[a] \in H_{*}(A)$ be arbitrary. Then $f_{n}(a) \in B_{n}$. Since s is an epimorphism $f_{n}(a)=s_{n}(c)$ for some $c \in C_{n}$. Hence $(a, c) \in$ D_{n}. Then $t_{*}[(a, c)]=\left[t_{n}(a, c)\right]=[a]$ showing t_{*} is an epimorphism. Since t is an epimorphism and t_{*} is an isomorphism we conclude that $t \in S$.

Next for any d.g.a. $E=\sum_{n \geq 0} E_{n}$ and d.g.a.-homomorphisms $u=\left\{u_{n}: E_{n} \rightarrow A_{n}\right\}$ and $v=$ $\left\{v_{n}: E_{n} \rightarrow C_{n}\right\} \operatorname{in} \mathcal{D} \mathcal{G} \mathcal{A}$, let the following diagram

Figure 10
commute, i.e., $f u=s v$. Consider the diagram
E

Figure 11
Define $h=\left\{h_{n}: E_{n} \rightarrow D_{n}\right\}$ by the ruleh $(x)=(u(x), v(x))$ for $x \in E$. Clearly h is well defined and is a d.g.a. homomorhism. Now for any $x \in E, t h(x)=t(u(x), v(x))=$
$u(x) \operatorname{and} g h(x)=g(u(x), v(x))=v(x)$, i.e., $t h=u$ and $g h=v$. This completes the proof of
Proposition 3.2.

3.3 Proposition.

If eachs $s_{i}: A_{i} \rightarrow B_{i}, i \in I, i$ an element ofS, where the index setIis an element of U, then $\prod_{i \in I} S_{i}: \quad \prod_{i \in I} A_{i} \rightarrow \quad \prod_{i \in I} B_{i}$ is an element ofS.

Proof. The proof is trivial.
The following result can be obtained from the above discussion.
3.4 Proposition. The categoryDGcAis complete.

From Propositions 3.1-3.4, it follows that the conditions of Theorem 2.10 are fulfilled and by the use of Theorem 2.13, we obtain the following result.

3.5 Theorem.

Every object A of the category $\mathcal{D} \mathcal{G} \mathcal{A}$ has an Adams cocompletion A_{S} with respect to the set of morphisms S and there exists a morphisme : $A_{S} \rightarrow$ in S which is couniversal with respect to the morphisms inS, that is, given a morphisms : B \rightarrow AinS there exists a unique morphismt : $\mathrm{A}_{\mathrm{S}} \rightarrow$ Bsuch that $\mathrm{st}=\mathrm{e}$. In other words the following diagram is commutative:

Figure 12

4. Minimal model

We recall the following algebraic preliminaries.
4.1 Definition. Deschner, 1975, Wu, 1980

A d.g.a. M is called a minimal algebra if it satisfies the following properties:

- Mis free as a graded algebra.
- Mhas decomposable differentials.
- $M_{0}=\mathbb{Q}, \quad M_{1}=0$.
- Mhas homology of finite type, i.e., for each $n, H_{n}(M)$ is a finite dimensionalvector space.

Let \mathcal{M} be the full subcategory of the category $\mathcal{D} \mathcal{G} \mathcal{A}$ consisting of all minimal algebras and all d.g.a.-maps between them.
4.2 Definition. Deschner, 1975, Wu, 1980

Let A be a simply connected d.g.a..A d.g.a. $M=M_{A}$ is called a minimal model of A if the following conditions hold:

$$
\begin{equation*}
M_{A} \in \mathcal{M} . \tag{i}
\end{equation*}
$$

(ii) Thereis a d.g.a.-map $\rho: M_{A} \rightarrow A$ which induces an isomorphism on homology,

$$
\text { i.e., } \rho_{*}: H_{*}\left(M_{A}\right) \xrightarrow{\cong} H_{*}(A) .
$$

Henceforth we assume that the d.g.a.-map $\rho: M_{A} \rightarrow A$ is a d.g.a.-epimorphism.

4.3 Theorem.Deschner, 1975, Wu, 1980

LetAbe a simply connected d.g.a. and $_{A}$ be its minimal model. The map $\rho: \mathrm{M}_{\mathrm{A}} \rightarrow$ Ahas couniversal property, i.e., for any d.g.a. Zand d.g.a.-map $\varphi: Z \rightarrow$ A,there exists a d.g.a.map $\theta: \mathrm{M}_{\mathrm{A}} \rightarrow$ Zsuch that $\rho \simeq \varphi \theta$; furthermore if the d.g.a.-map $\varphi: \mathrm{Z} \rightarrow$ Ais an epimorphism then $\rho=\varphi \theta$, i.e., the following diagram is commutative:

Z
Figure 13

5. The result

We show that under a reasonable assumption,the minimal model of a 1-connected d.g.a. can be expressed as the Adams cocompletion of the d.g.a. with respect to the chosen set of d.g.a.maps.
5.1 Theorem. $M_{A} \cong A_{s}$.

Proof. Let $e: A_{S} \rightarrow$ be the map as in Theorem 3.5 and $\rho: M_{A} \rightarrow$ Abe the d.g.a.-map as in Theorem 4.3. Since the d.g.a.-map $\rho: M_{A} \rightarrow A$ is a d.g.a.-epimorphism, by the couniversal property of e there exists a d.g.a.-map $\theta: A_{S} \rightarrow M_{A}$ such that $e=\rho \theta$.

$A S$	$\xrightarrow{e} \quad A$	
$\theta \downarrow$		$\nearrow \rho$
M_{A}		

Figure 14
By the couniversal property of ρ there exists a d.g.a. $-\operatorname{map} \varphi: M_{A} \rightarrow A_{S} \operatorname{such}$ thate $\varphi=\rho$.

M_{A}	$\xrightarrow{\rho}$	A
$\varphi \downarrow$	$\nearrow e$	
A_{S}		

Figure 15
Consider the diagram

Figure 16

Thus we havee $\varphi \theta=\rho \theta=e$. By the uniqueness condition of the couniversal property of e (Theorem 3.5), we conclude that $\varphi \theta=1_{A_{S}}$.Next consider the diagram

Figure 17

Thus we have $\rho \theta \varphi=e \varphi=\rho$. By the couniversal oroperty of ρ (Theorem 4.3), we conclude that $\theta \varphi=1_{M_{A}}$.Thus $M_{A} \cong A_{s}$. This completes the proof of Theorem 5.1.

References

Adams, J. F. (1973). Idempotent Functors in Homotopy Theory: Manifolds, Conf.
Adams J. F. (1975).Localization and Completion, Lecture Notes in Mathematics.Univ. of Chicago.

Deleanu A., Frei A. \& Hilton P. J. (1974). Generalized Adams completion.Cahiers de Top.et Geom. Diff., 15, 61-82.

Deleanu A. (1975). Existence of the Adams completion for objects of cocomplete categories. J. Pure and Appl. Alg., 6, 31-39.

Deschner A. J. (1976). Sullivan's Theory of Minimal Models, Thesis.Univ. of British Columbia. Gabriel P. \&Zisman M. (1967).Calculus of Fractions and Homotopy Theory.SpringerVerlag, New York.

Halperin S. (1977, 1981). Lectures on Minimal Models.Publ. U. E. R. de Mathé matiques, Univ. de Lille I.

Lane S. Mac (1971). Categories for the working Mathematicians.Springer-Verlag, New York.
Nanda S. (1980). A note on the universe of a category of fractions.Canad.Math. Bull., 23(4), 425-427.

Schubert H. (1972). Categories. Springer Verlag, New York.
Wu wen-tsun (1980).Rational Homotopy Type.LNM 1264, Springer-Verlag.

