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Abstract 

The objective of this study was to create a predictive model to classify stars, galaxies, and quasars, 

along with comparing different classification models to find the superior one. I hypothesized that 

it was possible to successfully train a machine learning model to classify stars, galaxies, and 

quasars using astronomical data provided by the Sloan Digital Sky Survey (SDSS). A multinomial 

logistic regression model has been trained and tested. It had an accuracy of 0.87, a weighted 

average precision, recall, and an f-1 score of 0.87, and a cross-validation accuracy score of 

0.8664. The next model, a decision tree, had an accuracy of 0.99, weighted average precision, 

recall, and an f-1 score of 0.99, a cross-validation accuracy score of 0.99, and a cross-validation 

accuracy score of 0.9858. The decision tree model had significantly superior performance 

compared to the logistic regression model and was a good fit and accurate classifier for stars, 

galaxies, and quasars, proving my hypothesis to be correct. The model from this study could be 

used as a reliable classification tool for a wide variety of astronomical purposes to accelerate the 

expansion of the sample sizes of stars, galaxies, and especially quasars. 

Keywords  

Logistic Regression, Decision Tree, Stars, Galaxies, Quasars, Classification 
 

 



MATTER: International Journal of Science and Technology 

ISSN 2454-5880   

   

103 

1. Introduction  

It has always been the pursuit of astronomers to study, analyze, and understand the universe 

with its countless celestial objects of endless variety. However, due to the celestial objects' 

differing distances, light-emitting intensities, and positions in space, they often appear as near-

identical smudges or dots of light when recorded using photometric data from telescopes, making 

it difficult to differentiate them from each other (Clarke et al., 2020). Therefore, the classification 

of celestial objects is very fundamental in astronomy for astronomers to be able to collect 

meaningful samples to critically study these celestial objects and uncover the complex and 

mysterious past, present, and future of the universe (Clarke et al., 2020). This study focused on the 

classification of three celestial objects: stars, galaxies, and quasars. 

1.1 Background Information 

Stars are burning hot balls of hydrogen and helium. They are formed through processes 

spanning millions of years where turbulent clouds of gas and dust continuously gather and clump 

together due to gravity and eventually collapse under their mass and gravity. (Stars and Nebulae). 

Analyzing stars is important to uncovering many of the complex processes and inner workings of 

celestial objects as well as better understanding our own Sun.  

 Galaxies are vast pools of stars, planets, galactic dust, gas, dark matter, and many other 

celestial objects. Studying galaxies, such as their composition and how they have formed and 

developed over time, can allow astronomers to learn and understand the functions, processes, and 

timeline of the universe on a much bigger scale and also better understand our home galaxy, the 

Milky Way, as well (Galaxies and QSOs).  

 Quasars, or quasi-stellar-objects, are created by supermassive black holes found in the 

galactic centers of galaxies (Redd, 2018). This type of galactic nuclei is formed by a disk-like 

cloud of dust and gas, the accretion disk, swirling around and eventually into the black hole. The 

friction between dust and gas from the black hole's immense pressure and gravity producing 

extremely high amounts of heat and light, making quasars one of the brightest celestial objects in 

the universe (Galaxies and QSOs). Quasars began forming at the early stages of the universe, thus 

their light and electromagnetic radiations, carrying information from billions of years ago, are a 

gift to unlock the history and understand the past of the universe. They can also be used to study a 

very wide range of topics such as galaxy evolutions, intervening intergalactic gas, cosmological 

evolution, black hole physics, etc. (Carrasco et al., 2015). 
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1.2 Significance and Literature Review 

The classification of celestial objects is of great significance in the fields of astronomy. Its 

most direct benefit is providing the means to gather data samples of stars, galaxies, and quasars. 

Particularly for quasars, despite how important they are to a wide range of astronomy studies and 

research, their sample sizes are still in the relative minority class (Clarke et al., 2020). It is only 

through improved classification processes can significant increases be made in the sample sizes of 

quasars and other celestial objects, consequently enabling further progress to be made in research. 

With modern telescopes recording an increasingly large amount of astronomical data, the usage of 

machine learning models in the task of classification has become more and more significant and 

prevalent because of their accuracy and speed (Clarke et al., 2020). While reviews of previous 

studies with similar objectives of classifications found both supervised and unsupervised machine 

learning models to be capable of great performance with accuracy and other metrics measured at 

over 90%, the supervised models had generally higher accuracies in classification, and 

unsupervised models were shown to be more effective at detecting unknown objects (Viquar et al., 

2018; Zhang et al., 2013). With supervised ML models, the classification models of random forest 

and support vector model (SVM) were used, along with decision tree and logistic regression, to 

either solely identify and separate quasars from other objects or to classify all three of stars 

galaxies, and quasars (Carrasco et al., 2015). Furthermore, data from SDSS were used to train 

many of the supervised classification models, indicating the information and variables that SDSS 

provides to be detailed, reliable, and highly relevant or connected to the goal of classifying celestial 

objects. 

 

2. Research Issues 

 With the classification of celestial objects being so significant to the fields of astronomy in 

expanding their existing sample sizes for better more comprehensive analysis in the future, fast 

and reliable classifiers are needed to enhance this progress. To this end, I hypothesized that it was 

possible to successfully train a machine learning model to classify stars, galaxies, and quasars 

using astronomical data provided by the Sloan Digital Sky Survey (SDSS). The objective of this 

study, thus, was to create a predictive model to classify stars, galaxies, and quasars by training and 

comparing the performance of logistic regression and decision trees machine learning models to 

identify the superior one. 
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3. Method 

The machine learning process is explained: data gathering, data analysis, data 

preprocessing, and training and testing of machine learning models. 

3.1 Data 

The data used in this study are from the Sloan Digital Sky Survey (SDSS), which is a 

leading astronomical survey that has been working for more than 20 years to produce extremely 

precise and detailed imaging and map of the universe. This public dataset, Data Release 14, is the 

second release of the fourth phase of the survey and had observations through July 2016. It contains 

18 variables with 10,000 total entries and no missing values (Abolfathi et al., 2018; Blanton et al., 

2017; Doi et al., 2010; Fukugita et al., 1996; Gunn et al., 1998; Gunn et al., 2006). However, 11 

of the variables (location of an object on the celestial sphere, the field/area of pixels in the image 

taken, info and specifications on the spectroscopy, optical fibre, etc.) have no contributions 

towards the classification of the object and were removed (Blanton et al., 2017). The descriptions 

of the remaining 6 feature variables and 1 class variable (Camera; Measures Of Flux And 

Magnitude; Redshifts, The Photometric Camera and the CCDs; Understanding SDSS Imaging 

Data; Understanding the Imaging Data), their first 10 entries, and their statistics are shown in 

Tables 1, 2, and 3 below: 

Table 1: Variables Description 

U The intensity of light (flux) with a wavelength of 3551Å (Angstrom) emitted by the 

object 

G The intensity of light (flux) with a wavelength of 4686Å emitted by the object 

R The intensity of light (flux) with a wavelength of 6166Å emitted by the object 

I The intensity of light (flux) with a wavelength of 7480Å emitted by the object 

Z The intensity of light (flux) with a wavelength of 8932Å emitted by the object 

Redshift Measurement of how fast the object is moving away relative to Earth. A result of 

Doppler’s Effect: light emitted from an object moving away increases in wavelength 

and shifts to the red end of the light spectrum 

Class Classification of the object as star, galaxy, or quasar 

 

 



MATTER: International Journal of Science and Technology 

ISSN 2454-5880   

   

106 

Table 2: First 10 Entries of Dataset 

 U G R I Z Redshift Class 

1 19.47406 17.0424 15.94699 15.50342 15.22531 -8.96E-06 STAR 

2 18.6628 17.21449 16.67637 16.48922 16.3915 -5.49E-05 STAR 

3 19.38298 18.19169 17.47428 17.08732 16.80125 0.1231112 GALAXY 

4 17.76536 16.60272 16.16116 15.98233 15.90438 -0.000110616 STAR 

5 17.55025 16.26342 16.43869 16.55492 16.61326 0.000590357 STAR 

6 19.43133 18.46779 18.16451 18.01475 18.04155 0.000314603 STAR 

7 19.38322 17.88995 17.10537 16.66393 16.36955 0.1002423 GALAXY 

8 18.97993 17.84496 17.38022 17.20673 17.07071 0.000314848 STAR 

9 17.90616 16.97172 16.67541 16.53776 16.47596 8.91E-05 STAR 

10 18.67249 17.71375 17.49362 17.28284 17.22644 0.04050813 GALAXY 

 

3.2 Exploratory Data Analysis 

Exploratory data analysis (EDA) is the initial process of data investigation and probing to 

understand the data through summary statistics and graphical visualizations (Patil, 2018), and, 

using the file manager Anaconda, the libraries/packages of Matplotlib (Hunter, 2007), Pandas 

(McKinney, 2010), and Seaborn (Waskom et al., 2017) were installed for this purpose. The number 

of variables and their types, entries, and missing or null values were examined. Then, the mean, 

standard deviation, minimum, lower quartile, median, upper quantiles, and a maximum of the 

feature variables were calculated and organized in Table 3 below. Next, a heat map of variable 

correlations, a distribution plot, and a count plot of the class variables was created and discussed 

in the subsections below: 
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Table 3 : Dataset Statistics 

 U G R     I    Z        Redshift 

 Mean 18.619355 17.371931  16.840963     16.583579  16.422833    0.143726 

Std       0.828656   0.945457 1.067764    1.141805    1.203188  0.388774 

Min    12.988970 12.799550   12.431600     11.947210  11.610410 -0.004136 

25%  18.178035 16.815100 16.173333 15.853705 15.618285 0.000081 

50%  18.853095   17.495135  16.858770    16.554985      16.389945  0.042591 

75%   19.259232  18.010145 17.512675  17.258550  17.141447 0.092579 

Max   19.599900 19.918970  24.802040  28.179630    22.833060 5.353854 

 

3.2.1 Heat Map of Variable Correlations 

Explanation and discussion of the heat map of variable correlations produced form EDA. 

Figure 1: Heat Map of Feature Variable Correlations  

Figure 1 is a heat map showing the correlation between the 6 features variables. The 

correlation strength, between -1 (perfect negative correlation) and 1 (perfect positive correlation), 

of any two features, is indicated by the color. While independent variables with high correlations 

with each other, creating causal relationships, can damage the accuracy and performance of models 
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and should be avoided, it is always important for a case-by-case analysis to be done for each high 

correlation to truly determine if it poses a danger to the performance of the model. As shown by 

the heat map, high correlations of around 0.9 or above were found between the features of u, g, r, 

i, and z. These features are extremely crucial information in classifying celestial objects from the 

photometric data and represent the five key color filters of the SDSS camera CCD system, with 

wavelengths covered from 3000 to 11000Å (Camera; The Photometric Camera and the CCDs; 

Understanding SDSS Imaging Data; Understanding the Imaging Data). Consequently, u, g, r, I, 

and z must be used together in classification to avoid critical information and accuracy loss 

(Fukugita et al., 1996). 

3.2.2 Kernel Density Distribution Plot 

Description and discussion of the kernel density distribution plot from EDA. 

Figure 2: Distribution Plot of Features, Color by Class 

Figure 2 present the distribution plots of each of the six features, which is further separated 

by the three classes. Since the distribution plots are kernel density plots, the total area of each 

density plot is 1, so the values on the y-axises don’t represent actual counts but rather magnitudes 
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relative to the range of values on the x-axises. As shown by the density plots, the dataset also 

doesn’t follow a normal distribution. 

3.2.3 Count Plot 

Explanation and discussion of the count plot of classes from EDA and their implications. 

Figure 3: Count Plot of Each Class 

Figure 3 shows the count plot of each class. The purpose of the count plot was to investigate 

whether the data entries for the three classes were relatively balanced. An imbalanced dataset, such 

as a three-class dataset with a ratio of 8:1:1, could cause a classification model, like logistic 

regression, to over-favor predictions of the class or classes with the overwhelming majority of the 

data, crippling the model's ability to classify others with the small minority (Chang et al., 2018). 

However, as shown by the figure, the ratio of data entries for stars: galaxies: quasars in the SDSS 

dataset is about 4.5: 5.5: 1, which is not considered to be a significant imbalance. Nevertheless, 

this possible problem of imbalance is further addressed in two ways. First, decision tree models 

perform very well with imbalanced training data, as they work by learning an impurity hierarchy 

of if/else questions formed from the features (Kat, 2019). This forces all three classes of stars, 

galaxies, and quasars to be equally favored in classification with similar performances (Logan 

&amp; Fotopoulou, 2020). Second, the variety of performance metrics, including the precision, 

recall, and f-1 scores in the classifications reports; the precision-recall curves; and the confusions 

matrix, could comprehensively gauge the performance of the logistic regression and decision tree 

models, detecting any inaccuracies resulting from imbalanced data (Kohli, 2019). Therefore, the 



MATTER: International Journal of Science and Technology 

ISSN 2454-5880   

   

110 

high performances of both models, as discussed later, signalled that the possible data imbalance is 

not a problem. 

3.3 Preprocessing Data 

To preprocess and train models, the package of Scikit-learn (Pedregosa et al., 2017) was 

installed. During preprocessing, the dataset was standardized to ensure the performance of the 

models (Dorpe, 2018). Since the feature variables have different magnitude scales because of their 

different units of measurement, if they were not standardized, variables on a much larger scale 

would dominate over others, making the model unable to learn from those with smaller scales and 

consequently inaccurate. Since the variables are not normally distributed, the MinMax scaler was 

used to center the variables and bring them all up to the same scale using equation 1 (Dorpe, 2018):  

𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
 (1) 

This process was repeated for every value of every feature variable. After standardization, 

the data were separated into two groups: the training sample with 80% of the data and the testing 

sample with 20%. The training sample would be used to fit or train the model, and the testing 

sample would be used to test the accuracy and performance of the model. 

3.4 Machine Learning 

 The first machine learning model used is the logistic regression model. Since the dependent 

class variable is categorical, with three values or classes, the multinomial logistic regression model 

was used, which used the softmax function and cross-entropy loss function to predict multiple 

classifications (Chauhan, 2018). Then, a classification report, including precision, recall, f1-score, 

their macro and weighted averages, and accuracy, along with the cross-validation score were 

calculated. A confusion matrix was also created and visualized using a corresponding heat map. 

 The next machine learning model used is the decision tree model. A decision tree model is 

a series of nodes, conditions, that are connected by branches, which are the outcomes of the nodes' 

conditions. Starting at the root node, each node has two or more branches that lead more nodes or 

leaf nodes (the resulting predictions/classification). The conditions of the nodes in the decision 

tree were formed from the feature variables and their values, and their placements were determined 

by the Gini index, which measured the heterogeneity/impurity of the data resulting from the 

separation by the condition, the smallest of which was chosen for each node (Sanjeevi, 2018). The 

classification report and cross-validation score for the decision tree were also calculated. The tree 

visualization and the heat map of its confusion matrix were also created. 
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4. Results and Discussions 

The performance metrics of the two machine learning models are discussed and compared. 

4.1 Multinomial Logistic Regression 

The classification report, cross-validation score, and confusion matrix heat map of the 

multinomial logistic regression model are described and explained. 

4.1.1 Classification Report 

The classification report of the multinomial logistic regression is displayed, and its 

significance is explained. 

Table 4: Classification Report of Logistic Regression Model 

 Pecision Recall F1-Score Support 

STAR 0.84 0.87  0.85 804 

GALAXY 0.87 0.87 0.87 1018 

QSO 0.98 0.85  0.91  178 

Accuracy   0.87 2000 

Macro Avg      0.90 0.86 0.88 2000 

Weighted Avg  0.87  0.87 0.87    2000 

ConvergenceWarning: lbfgs failed to converge (status=1):  

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. 

Table 4 shows the classification report of the multinomial logistic regression. The 

classification report shows the main performance metrics of the machine learning model in 

predicting each class, including the precision, recall, f1-score, their macro and weighted averages, 

their counts, and the overall accuracy (Kohli, 2019): 

True positives (TP): Predicted positive and actually positive. 

False positives (FP): Predicted positive but actually negative. 

True negatives (TN): Predicted negative and actually negative. 

False negatives (FN): Predicted negative but actually positive. 

● Accuracy - Percentage of true predictions: 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (2) 

● Precision - Percentage of predicted true positive predictions 

   
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 
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● Recall - Percentage of the positive cases that were predicted true: 

   
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

● F1-score - Weighted average of precision and recall; the best score of 1 and worst score of 

0: 

   
2

1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑟𝑒𝑐𝑎𝑙𝑙

=
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
   (5) 

● ‘macro avg’ - Unweighted average of each metric. This did not account for class imbalance. 

● ‘weighted avg’ - Weighted average of each metric. This accounted for class imbalance. 

As shown by the classification report, all of the performance metrics, with 1 as the 

maximum and 0 as the minimum, are well above 0.84 and mostly around 0.9, which is a good 

performance from a machine learning model by any standards and indicates that the logistic 

regression model fitted the data well. It is also worth considering the difference between accuracy 

and f1-score, as shown by equations 2 and 5: while accuracy focuses on the true positives and true 

negative, the f1-score focuses on the false positive and false negative and is a better measure of 

the falsely classified cases than accuracy. Also, accuracy is generally fit for when the dataset is 

balanced, whereas the f1-score is a better metric for when the dataset is imbalanced. Since 

imbalance is a possible issue for the SDSS dataset, the f-1 score is a better metric than accuracy in 

this study (Huilgol, 2019). 

Directly below the classification report is a corresponding convergence warning that 

appeared during the data analysis. This warning could indicate several different issues: the dataset 

was not properly scaled, the hyperparameter (like C) needed to be changed, or the default max 

iteration was too low. Since the dataset was already scaled by the MinMaxScaler previously, not 

properly scaling could not be the problem. The hyperparameters or the max iteration could be 

further adjusted, but the fact that max iteration was too low, meaning the logistic regression model 

needed more iterations to converge, indicates that the multinomial logistic regression model is not 

optimal for the dataset. 

4.1.2 Cross-Validation 

Cross-validation is a method of model validation that splits the data in creative ways to 

obtain better estimates of the “real world” model performance and to minimize validation error. It 

tests whether the model is overfitted to the specific training and testing samples, which could result 
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in bad performance with any other dataset that the model has not seen yet (Shaikh, 2018). The k-

fold cross-validation method, as shown below in Figure 4, was specifically used: 

Figure 4: k-Fold Cross-Validation Method, k=5  

The k parameter in this method determined the number of groups that a data sample was to 

be split into. In this case, k=5, so the dataset would be correspondingly split into 5 equal parts and 

the below process would run 5 times, each time with a different test data set (Shaikh, 2018): 

1. Choose one of the groups as the test data set 

2. Use the remaining groups as the training data set 

3. Train a model on the training set and evaluate its accuracy on the test set 

4. Retain the accuracy score and discard the model 

 The score of the k-fold cross-validation for the multinomial logistic regression model was 

0.8664, representing the accuracy of the model as the average of the accuracy of each fold or 

iteration, which indicates that the model would perform/generalize well with other datasets with a 

low validation error. 

4.1.3 Confusion Matrix Heat Map 

The confusion matrix heat map of the logistic regression is displayed and explained. 



MATTER: International Journal of Science and Technology 

ISSN 2454-5880   

   

114 

 

Figure 5: Heat Map of Confusion Matrix of Logistic Regression Model 

Figure 5 shows the heat map of the multinomial logistic regression model's confusion 

matrix. A confusion matrix presents the count of the true positives, false positives, true negatives, 

and false negatives of each class. The three squares at the top left, the center, and the bottom right 

show the counts, as indicated by the color intensity, of the true positives of the classes, with the 

rest of the squares showing the counts of false classifications. Overall, the majority, around eighty-

five to ninety, of the cases in each class were correctly classified, further showing the model's 

performance is fairly well. However, upon further inspection, it can be seen that each of those ten 

to fifteen percent of wrong classifications for each class was centered around one particular 

predicted class. This centering of wrong classifications around one wrong label could indicate 

intrinsic problems or internal unfitness of the multinomial logistic regression model. 

4.2 Decision Tree 

The visualization, classification report, cross-validation score, and confusion matrix heat 

map of the decision tree model are described and explained. 

4.2.1 Tree Model Visualization 

The visual representation of the decision tree model is shown and its features are described. 



MATTER: International Journal of Science and Technology 

ISSN 2454-5880   

   

115 

 

Figure 6: First Two Levels of Decision Tree Model 

Figure 6 is a visualization of the first two levels of the decision tree model. In the 

visualization, there are five pieces of information for every node. The first piece of information is 

a condition or question. The structure of the condition consists of selecting a feature variable and 

choosing a threshold value using the Gini index method. The incoming objects will be separated 

by the comparison of their corresponding feature variable value to the threshold value. The next 

piece of information is the Gini impurity index. The Gini index represents the weighted impurity, 

heterogeneity, of the training data after it is split by the current node's condition (Ramadhan et al., 

2017), with 0 denoting that all objects in each split are one class and 1 denoting that the objects 

are randomly distributed. This is the method used to determine which feature variable and 

threshold are used for each node position by order of smallest Gini index (more desirable) to 

largest. While the overall Gini index of the entire decision tree decreases with each successive 

node split, the Gini index for each node can both increase and decrease as compared to the previous 

node depending on its sample size and value distributions (Lee, 2016). The third piece of 

information shows the sample size of the data that passes through the node during the training 

process. The fourth piece of information shows the counts of the classes in the training data sample 

that passes through the node. The fifth piece of information is the supposed classification of the 

node, based on the class that has the majority count in the fourth piece. Each classification has a 

corresponding color: orange for stars, green for galaxies, and purple for quasars, with the color 

intensity matching the majority percentage. Leaf nodes, which are on the bottom ends of the tree, 
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have no conditions, a definite Gini index of 0, zeroes for two of the three classes, and the fifth 

piece with a definite classification and highest color intensity. 

4.2.2 Classification Report 

The classification report of the decision tree model is displayed. Its scores and metrics are 

described and compared to those in the classification report of the logic regression. 

Table 5 : Classification Report of Decision Tree Model 

 Precision Recall F1-Score Support 

STAR 1.00 0.99  1.00 856 

GALAXY 0.99 0.99 0.99 987 

QSO 0.95 0.93 0.94 157 

Accuracy   0.99 2000 

Macro Avg 0.98 0.97 0.98 2000 

Weighted Avg 0.99 0.99 0.99 2000 

 

Table 5 is the classification report for the decision tree model. All of the metrics in the 

report are the same as those for the logistic regression model to more effectively compare the two 

models and evince the superior one. When comparing the two classification reports, the decision 

tree model's performance can be seen to be significantly better than that of the multinomial logistic 

regression model. The precision, recall, f-1 score, their macro, and weighted averages, and 

accuracy of the decision tree model are mostly within proximity to the highest value of 1, signalling 

that the decision tree model is far superior to the logistic regression in its performance of 

classifying stars, galaxies, and quasars. 

4.2.3 Cross-Validation 

 Often with performance metrics that are extremely close to or are equal to 1, a model may 

be suspected of being over-fitted to the data, which is why the cross-validation accuracy score is 

extremely critical in this case to mimic the model's possible ‘real-world ’performance on unseen 

data and to ensure that it has actual significance (Shaikh, 2018). The cross-validation score of the 

decision tree model results is 0.9858, which is even significantly higher than the logistic regression 

model's cross-validation score of 0.8664. With such a high cross-validation score, the decision tree 

model can be confidently concluded to be extremely well fitted to the data and that its high 
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performance with the testing data will translate smoothly to unseen data. 

4.2.4 Confusion Matrix Heat Map 

The confusion matrix heat map of the decision tree is displayed and compared to that of 

the multinomial logistic regressions. 

Figure 7: Heat Map of Confusion Matrix of Decision Tree Model 

Figure 7 shows the heat map of the decision tree model's confusion matrix. When compared 

to that of the logistic regression model, the confusion matrix for the decision tree has both 

significantly less false positive and false negatives for all three classes, which has already been 

evinced by the higher scores on the classification reports. Furthermore, the decision tree also 

solved a noticeable problem with logistic regression. As previously discussed, the false 

classifications of the logistic regression were all primarily concentrated around a predicted class. 

The decision tree, on the other hand, mostly solved this issue by having fairly balanced false 

classifications and small false classification sizes so that their distribution becomes insignificant 

even if the wrong classifications were concentrated like those of the quasar class. 

4.3 Research Limitations and Future Improvements 

One of this study’s limitations is that while there are far more than three types of light-

emitting celestial objects in the universe, the final decision tree classification model was trained 

on data from only stars, galaxies, and quasar and thus can only classify stars, galaxies, and quasars. 

This means that if a real-world dataset contains data from foreign objects, like comets, large gas 

clouds, etc, the model would always wrongly classify them as either stars, galaxies, or quasars. 
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A second limitation, and a future improvement at the same time, lies in training more 

classification models. Aside from multinomial logistic regression and decision trees, there is still 

a wide variety of classification models and variations, such as the random forest, support vector 

machine, or neural network, that are not used in this study due to time constraints. Although the 

decision tree model's performance in classifying stars, galaxies, and quasars was high and seemed 

to be the most fitting model, there is still room to improve. Each model has its strengths and 

weaknesses and utilizing more models can enable a much fuller understanding of their respective 

strengths and weaknesses, thus lead to a model that fits the data even better. 

Another improvement is to solve the logistic regression model's convergence warning. 

Although the warning indicates that logistic regression is possibly just not fit for the dataset, there 

is still a possibility that, by adjusting the hyperparameter and the max iterations so that the warning 

is resolved, the model's performance can be significantly improved, leading to a much more 

meaningful and interesting comparison with the decision tree model. 

 

5. Conclusion 

 In this study, machine learning models of multinomial logistic regression and decision trees 

were built and trained using SDSS data to classify stars, galaxies, and quasars. While other studies 

similarly used data from SDSS to classify stars, galaxies, and quasars, this study compared the 

performance between two different machine learning models while other studies often only use 

one classifier of mostly random forest (Yoong 2018; Carrasco et al., 2015). The data used are from 

the Sloan Digital Sky Survey's Data Release 14. The dataset consists of 17 feature variables and 1 

class variable. Of the 17 feature variables, only 6 are relevant to the classification of celestial 

objects and the rest were removed. After EDA, the dataset was subsequently scaled using the Min-

Max scaler and split into training and testing samples. The logistic regression model and the 

decision tree model were subsequently fitted to the training data and tested by a variety of 

performance metrics using the testing sample. By analyzing and comparing the variety of 

performance metric results for the multinomial logistic regression and decision tree models, it can 

be concluded that the decision tree model is significantly superior to the logistic regression model 

and is an extremely well fit for classifying stars, galaxies, and quasars. Therefore, my hypothesis 

of being able to successfully train a machine learning model for the classification of celestial 

objects using SDSS data is proven to be correct. The decision tree model created in this study, 
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which has accuracies all within proximity to one hundred percent, can be used as a competent and 

reliable classification tool in all astronomical purposes with the need for classifying stars, galaxies, 

and quasars, potentially being able to allow astronomers to increase the sample sizes of stars, 

galaxies and particularly quasars with great speed and accuracy. 
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