ISOLATION AND CHARACTERIZATION OF CHROMIUM TOLERANT BACTERIA FROM TANNERY EFFLUENT AT DINDIGUL DISTRICT, TAMILNADU, INDIA
DOI:
https://doi.org/10.20319/lijhls.2017.31.3548Keywords:
Chromium Tolerant Bacteria, Hexavalent Chromium, MIC, Tannery Effluent, DindigulAbstract
Hexavalent chromium contamination in environment became a serious problem in all over the world. The chromium, a toxic heavy metal, is a major contaminant in tannery wastes and their accumulation into the soil and water is an environmental issue particularly in Tamilnadu. Dindigul is the headquarters of leather tannery industry. Tannery effluent was collected from leather industry located at Dindigul district. Bacteria having tolerance to chromium has been isolated. A total of six species of chromium tolerant bacteria were isolated and their minimum inhibitory concentration of all the six isolates against hexavalent chromium was determined on nutrient agar supplemented with varying concentration of chromium from 100 ppm to 600 ppm. The bacterial strains were characterized by morphological, cultural and biochemical analysis. They were identified as Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Micrococcus species, Bacillus cereus and Bacillus licheniformis. The analysis of the results concluded that all the bacteria showed resistance against chromium with Minimum Inhibitory Concentration (MIC) values up to 100 mg/L.
References
Ankur Gupta & Chandrajit Balomajumder (2016). Biological removal of cr(vi) and phenol from single and binary substrate solution pure and consortium culture of Escherichia coli and bacillus sp. International Journal of Plant, Animal and Environmental Sciences Vol. 6 (1).
Camargo F.A.O., Okeke B.C., Bento F.M., & Frankenberger W.T. (2005). Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate. Appl. Soil Ecol. (vol.29, pp 193-202). https://doi.org/10.1016/j.apsoil.2004.10.006
Chandra P.,& Kulshreshtha K. (2004). Chromium accumulation and toxicity in aquatic vascular plants. The Bot. Rev. (vol. 70(3), pp313–327). https://doi.org/10.1663/0006-8101(2004)070[0313:caatia]2.0.co;2
Cheng., Guojun., & Xiaohua Li. (2009).Bioreduction of Chromium (VI) By Bacillus Sp. Isolated from Soils of Iron Mineral Area. Journal of Soil Biology.(vol.45 (5),pp 483 – 487).
Chovanova K., Sladekova D., Kmet V., Proksova M., Harichova J., Puskarova A., Polek B., & Ferianc P.(2004). Identification and characterization of eight cadmium resistant bacterial isolates from a cadmium contaminated sewage sludge. Biologia Bratislava. (Vol. 59(6), pp 817-827).
Covington, A. (1997). Modern Tanning Chemistry Chemical Society Review, (vol 26, pp 111–126). https://doi.org/10.1039/cs9972600111
Dey S., Pandit B., & Paul AK. (2014). Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment. J Mining. doi: 10.1155/941341.
Ellis R.J., Morgan P., Weightman A.J., & Fry J.C.(2003). Cultivation dependent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Applied and Environmental Microbiology (vol.69, pp. 3223–3230). https://doi.org/10.1128/AEM.69.6.3223-3230.2003
Ezaka.E., Anyanwu. C.U. (2011). Chromium (VI) tolerance of bacterial strains isolated from sewage oxidation ditch, international journal of environmental sciences (Vol 1, No 7).
Farag S., & Zaki S. (2010). Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. J. Environ. Biol. (vol.31, pp.877-882).
Ferdouse Zaman Tanu., Azizul Hakim., & Sirajul Hoque (2016). Bacterial Tolerance and Reduction of Chromium (VI) by Bacillus Cereus Isolate PGBw4. American Journal of Environmental Protection. (vol.5 (2). pp.35-38). https://doi.org/10.11648/j.ajep.20160502.13
Ganguli A., &Tripathi A.K. (2002) Bioremediation of toxic chromium electroplating effluent by chromate reducing Pseudomonas aeruginosa A2chr in two bioreactors. Appl. Microbiol. Biotechnol. (vol.58, pp 416-420).
Hutchinson T.C., & Symington M.S. (1997). Persistence of metals stress in a forested ecosystem near Sudbury, 66yrs after closure of the O’Donnell roast bed. J. Geochem. Explor. (vol.58, pp. 323-330). https://doi.org/10.1016/S0375-6742(96)00067-2
Kamaludeen S.P.B.K., Arunkumar K.R., Avudainayagam S, & Ramasamy K, (2003). Bioremediation of chromium contaminated environments. Ind. J. Exp Bio. (vol.41, pp 972¬-985).
Karelova E., Harichova J., Stojnev T., Pangallo D.,&Ferianc P.(2011). The isolation of heavy–metal resistant culturable bacteria and resistance determinants from a heavy-metal contaminated site. Biologia (cellular and molecular biology) (vol.66(1),pp 18-26). https://doi.org/10.2478/s11756-010-0145-0
Kaur, Harpreet & Ashwani Kumar. (2014). Bioremediation of Hexavalent Chromium in Wastewater Effluent by Pseudomonas Putida (MTCC 102). Journal of Research in Earth & Environmental Sciences, (vol.1(4),pp 18 – 24).
Liu Y.G., Xu W.H., Zeng G.M., Li X., &Gao H. (2006). Cr (VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem. (vol.41,pp1981-1986). https://doi.org/10.1016/j.procbio.2006.04.020
Ma Z., Zhu W., Long H., Chai L., & Wang Q (2007). Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochem. (vol. 42, pp1028-1032). https://doi.org/10.1016/j.procbio.2007.03.007
Malaviya, P., & Singh, A. (2011) physicochemical technologies for remediation of chromium-containing waters and wastewaters. Critical Rev. Envi. Sci. Tech.(vol. 41,pp 1111– 1172). https://doi.org/10.1080/10643380903392817
Martins B.L., Cruz C.C.V., & Luna A.S. (2006).Sorption and desorption of Pb +2 ions by dead Sargassum sp. biomass. Biochemical Engineering Journal. (vol.27 (3) pp. 310-314). https://doi.org/10.1016/j.bej.2005.08.007
Mgbemena, I.C., NnokweJ.C,AdjerohL.A.,&OnyemekaraN.N. (2012).Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics. Current Research Journal of Biological Sciences. (vol.4(5), pp 551 – 556).
Monica Sen & *Harshada Joshi (2016). Determination of minimum inhibitory concentration and antibiotic susceptibility of zinc tolerant bacteria isolated from mine soil of zawar mines Indian Journal of Fundamental and Applied Life Sciences (Vol. 6 (2) pp. 23-29).
Muhammad Q. (2013) Biodegradation of hexavalent chromium (Cr+6) in wastewater using Pseudomonas sp. and Bacillus sp. bacterial strains. Int J EneEnv. (Vol. 4(4) pp. 653-662).
Mythili, K., &KarthikeyanB.(2011) Bioremediation of Cr (VI) from Tannery effluent using Bacillus spp and Staphylococcus Spp. International Multidisciplinary Research Journal. (vol. 1(6) pp. 38-41).
National Research Council (1976). Effects of Chromium in the Canadian environment. Associate committee on Scientific Criteria for Environment, NRCC No. 15017, Ottawa.
Pal A.,& Paul A.K.(2004). Aerobic chromate reduction by chromium resistant bacteria isolated from serpentine soil. Microbiol. Res. (vol.159, pp.347-354). https://doi.org/10.1016/j.micres.2004.08.001
Parameswari E., Lakshmanan A., & Thilagavathi T.(2009). Chromate resistance and reduction by bacterial isolates. Austr. J. Basic and Appl. Sci. (vol.3: (2), pp 1363-1368.
Pavel, Lucian Vasile, Mariana Diaconu& Maria Gavrilescu.(2012).Studies of Toxicity of Chromium(VI) and Cadmium(II) on Some Microbial Species. International Symposium on Biosorption and Bioremediation.Romania.
Philip L., Iyengar L., & Venkobachar C.(1998). Cr (VI) reduction by Bacillus coagulans isolated from contaminated soils. J. Environ. Eng. (vol.124, pp.1165-1170). https://doi.org/10.1061/(asce)0733-9372(1998)124:12(1165)
Raji C., &Anirudhan T.S.(1997).Chromium (VI) adsorption by saw dust: kinetics and equilibrium. Indian Journal of Chemical Technology, (vol.4, pp 228-236).
Shakoori A.R., Makhdoom M., & Haq R.U.(2000). Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. App. Microbiol. Biotechnol. (vol.53, pp348-351). https://doi.org/10.1007/s002530050033
Shakoori A.R., Maakhdoom M.M.,& Haq R.U.(1999). Hexavalent chromium reduction by a dichromate resistant grampositive bacterium isolate from effluent of tanneries. Appl. Micrbiol. and Biotechnol., (vol.53, pp 348 – 351). https://doi.org/10.1007/s002530050033
Sharma S., & Adholeya A. (2012). Hexavalent chromium reduction in tannery effluent by bacterial species isolated from tannery effluent contaminated soil. J. Environ. Sci. Technol. (vol.5(3), pp.142-154). https://doi.org/10.3923/jest.2012.142.154
Sharma, S., & Malaviya, P. (2014). Bioremediation of tannery wastewater by chromium resistant fungal isolate Fusariumchlamydosporium SPFS2-g. Current World Envi. (vol.9, pp 721–727).
Shukla, O.P., Rai U. N., Singh N. K., Smita Dubey &Baghel V. S. (2007). Isolation and Characterization of Chromate Resistant Bacteria from Tannery Effluent. Journal of Environmental Biology. (vol.28(2), pp 399 – 403).
Tripathi M., & Garg S.K. (2010). Studies on selection of efficient bacterial strain simultaneously tolerant to hexavalent chromium and pentachlorophenol isolated from treated tannery effluent. Res. J. Microbiol. Vol.5, pp 707–716). https://doi.org/10.3923/jm.2010.707.716
Verma N., & Rahal R.(1996). Removal of chromium by Albizialibbeck pods from industrial wastewater. J. Ind. Pollut. Control. (vol.12, pp 55-59).
Verma. T., Ramteke. P.W.,& Garg. S.K. (2004). Occurrence of chromium resistant thermo tolerant coliforms in tannery effluent. Indian Journal of Experimental Biology. (Vol.42, pp 1112-1116).
Verma. T., Ramteke. P.W., and Garg. S.K. (2008). Quality assessment of treated tannery wastewater with special emphasis on pathogenic E. coli detection through serotyping. Environmental Monitoring and Assessment. (vol.145, pp 243-249). https://doi.org/10.1007/s10661-007-0033-4
Wang Y.T., &Shen H. (1995). Bacterial reduction of hexavalent chromium: A review. J. Ind. Microbiol. (vol.14, pp.159-163). https://doi.org/10.1007/bf01569898
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Nazeema. M, Nirmala. T
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.