GENOTOXICITY OF CERIUM OXIDE NANOPARTICLE IN ZEBRAFISH AND GREEN MUSSEL PERNA VIRIDIS USING ALKALINE COMET ASSAY
DOI:
https://doi.org/10.20319/lijhls.2019.43.118127Keywords:
Single Cell Gel Electrophoresis, Nanoceria, DNA Damage, Zebrafish, Green MusselAbstract
Cerium oxide nanoparticles or nanoceria has versatile application in biomedical, solar cells and gas sensors. Increasing utilization of nanoceria has raised concerns over its release to environment and potential exposure. In vitro studies have shown its genotoxic potential, but reports on aquatic life are very limited. In this study, zebrafish (Danio rerio) and green mussel (Perna viridis) was exposed to different concentration 10, 20, 50 µg/l of nanoceria for 24, 72, and 120 h and the genotoxic response was measured using comet assay. The results showed significant (p < 0.05) increase in tail DNA (TDNA) and olive tail moment (OTM) as measured using comet assay in exposed animals as compared to control. The highest TDNA and OTM were measured after 120 h of exposure with 50 µg/l of nanoceria in zebrafish as well as in green mussel. The results of this study demonstrate that short-term exposure to nanoceria causes a genotoxic response in zebrafish and green mussel, hence its environmental release should be carefully monitored.
References
Adebayo, O.A., Akinloye, O., & Adaramoye, O.A., (2018). Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia, 50(3). https://doi.org/10.1111/and.12920
Ali, D., Alarifi, S., Kumar, S., Ahamed, M., & Siddiqui, M.A., (2012). Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquatic toxicology, 124, 83-90. https://doi.org/10.1016/j.aquatox.2012.07.012
Ali, D., Alarifi, S., Kumar, S., Ahamed, M., & Siddiqui, M.A., (2012). Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquat Toxicol, 124-125, 83-90. https://doi.org/10.1016/j.aquatox.2012.07.012
Ali, D., Ali, H., Alarifi, S., Kumar, S., Serajuddin, M., Mashih, A.P., Ahmed, M., Khan, M., Adil, S.F., Shaik, M.R., & Ansari, A.A., (2015). Impairment of DNA in a freshwater gastropod (Lymnea luteola L.) after exposure to titanium dioxide nanoparticles. Arch Environ Contam Toxicol, 68(3), 543-52. https://doi.org/10.1007/s00244-015-0132-0
Azari, A., Shokrzadeh, M., Zamani, E., Amani, N., & Shaki, F., (2018). Cerium oxide nanoparticles protects against acrylamide induced toxicity in HepG2 cells through modulation of oxidative stress. Drug Chem Toxicol, 1-6. https://doi.org/10.1080/01480545.2018.1477793
Boran, H., & Ulutas, G., (2016). Genotoxic effects and gene expression changes in larval zebrafish after exposure to ZnCl2 and ZnO nanoparticles. Dis Aquat Organ, 117(3), 205-14. https://doi.org/10.3354/dao02943
Canesi, L., Canesi, L., Frenzilli, G., Balbi, T., Bernardeschi, M., Ciacci, C., Corsolini, S., Della Torre, C., Fabbri, R., Faleri, C., Focardi, S., Guidi, P., Kočan, A., Marcomini, A., Mariottini, M., Nigro, M., Pozo-Gallardo, K., Rocco, L., Scarcelli, V., Smerilli, A., & Corsi, I. (2014). Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquat Toxicol, 153, 53-65. https://doi.org/10.1016/j.aquatox.2013.11.002
Cassee, F. R., van Balen, E. C., Singh, C., Green, D., Muijser, H., Weinstein, J., & Dreher, K. (2011). Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol, 41(3), 213-229. https://doi.org/10.3109/10408444.2010.529105
Chakraborty, C., Sharma, A. R., Sharma, G., & Lee, S. S. (2016). Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnology, 14(1), 65. https://doi.org/10.1186/s12951-016-0217-6
Dedeh, A., Ciutat, A., Treguer-Delapierre, M., & Bourdineaud, J. P. (2015). Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology, 9(1), 71-80. https://doi.org/10.3109/17435390.2014.889238
Du, J., Wang, S., You, H., Jiang, R., Zhuang, C., & Zhang, X. (2016). Developmental toxicity and DNA damage to zebrafish induced by perfluorooctane sulfonate in the presence of ZnO nanoparticles. Environ Toxicol, 31(3), 360-371. https://doi.org/10.1002/tox.22050
Fang, Q., Shi, X., Zhang, L., Wang, Q., Wang, X., Guo, Y., & Zhou, B. (2015). Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater, 283, 897-904. https://doi.org/10.1016/j.jhazmat.2014.10.039
Gao, M., Yang, Y., Lv, M., Song, W., & Song, Z. (2018). Oxidative stress and DNA damage in zebrafish liver due to hydroxyapatite nanoparticles-loaded cadmium. Chemosphere, 202, 498-505. https://doi.org/10.1016/j.chemosphere.2018.03.146
George, S., Lin, S., Ji, Z., Thomas, C. R., Li, L., Mecklenburg, M., . . . Nel, A. E. (2012). Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano, 6(5), 3745-3759. https://doi.org/10.1021/nn204671v
Ibrahim, H. G., Attia, N., Hashem, F., & El Heneidy, M. A. R. (2018). Cerium oxide nanoparticles: In pursuit of liver protection against doxorubicin-induced injury in rats. Biomed Pharmacother, 103, 773-781. https://doi.org/10.1016/j.biopha.2018.04.075
Konca, K., Lankoff, A., Banasik, A., Lisowska, H., Kuszewski, T., Gozdz, S., Koza, Z., & Wojcik, A. (2003). A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res, 534(1-2), 15-20. https://doi.org/10.1016/S1383-5718(02)00251-6
Mahaye, N., Thwala, M., Cowan, D. A., & Musee, N. (2017). Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. Mutat Res, 773, 134-160. https://doi.org/10.1016/j.mrrev.2017.05.004
Minarchick, V. C., Stapleton, P. A., Fix, N. R., Leonard, S. S., Sabolsky, E. M., & Nurkiewicz, T. R. (2015). Intravenous and gastric cerium dioxide nanoparticle exposure disrupts microvascular smooth muscle signaling. Toxicol Sci, 144(1), 77-89. https://doi.org/10.1093/toxsci/kfu256
Ozel, R. E., Hayat, A., Wallace, K. N., & Andreescu, S. (2013). Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish. RSC Adv, 3(35), 15298-15309. https://doi.org/10.1039/c3ra41739e
Patel, P., Kansara, K., Singh, R., Shukla, R. K., Singh, S., Dhawan, A., & Kumar, A. (2018). Cellular internalization and antioxidant activity of cerium oxide nanoparticles in human monocytic leukemia cells. Int J Nanomedicine, 13, 39-41. https://doi.org/10.2147/IJN.S124996
Pezzini, I., Marino, A., Del Turco, S., Nesti, C., Doccini, S., Cappello, V., Gemmi, M., Parlanti, P., Santorelli, F.M., Mattoli, V., Ciofani, G. (2017). Cerium oxide nanoparticles: the regenerative redox machine in bioenergetic imbalance. Nanomedicine (Lond), 12(4), 403-416. https://doi.org/10.2217/nnm-2016-0342
Ramesh, R., Kavitha, P., Kanipandian, N., Arun, S., Thirumurugan, R., & Subramanian, P. (2013). Alteration of antioxidant enzymes and impairment of DNA in the SiO2 nanoparticles exposed zebra fish (Danio rerio). Environ Monit Assess, 185(7), 5873-5881. https://doi.org/10.1007/s10661-012-2991-4
Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res, 175(1), 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
Villacis, R. A. R., Filho, J. S., Pina, B., Azevedo, R. B., Pic-Taylor, A., Mazzeu, J. F., & Grisolia, C. K. (2017). Integrated assessment of toxic effects of maghemite (gamma-Fe2O3) nanoparticles in zebrafish. Aquat Toxicol, 191, 219-225. https://doi.org/10.1016/j.aquatox.2017.08.004
Zhang, H., He, X., Zhang, Z., Zhang, P., Li, Y., Ma, Y., Kuang, Y., Zhao Y., & Chai, Z. (2011). Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol, 45(8), 3725-3730. https://doi.org/10.1021/es103309n
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of Published Articles
Author(s) retain the article copyright and publishing rights without any restrictions.
All published work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.