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Abstract 

The objective of this research is to demonstrate hypergraph versatility and applicability for 

modeling diverse biological systems. The inherent structure of hypergraphs allows for encoding 
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of higher-order feature interactions, providing a flexible framework for efficient models that can 

enhance our understanding of physical phenomena and one that can be generalized across various 

datasets. By adopting innovative methods including centrality measure and populations of models 

rather than singular instances, biases and overfitting tendencies are mitigated, again presenting 

promise for application across a broad spectrum of biological systems. Furthermore, emphasis is 

placed on the significance of probabilistic distribution analysis in elucidating threshold selection 

and feature relevance while maintaining high levels of accuracy. Our results demonstrate the 

advantages of hypergraph models on two different datasets; with the first on gene expression and 

the identification of outlier genes and the second on classifying starch grains. There is significant 

scope in the application of the hypergraph to a wider class of biological systems, with the potential 

to improve understanding of the biological processes. 

Keywords:  

Hypergraph, Hypergraph Model, Hypergraph Classifier, Graph 

1. Background and Research Objectives 

Hypergraphs have been applied across a broad range of studies, including bioinformatics 

(Di et. al., 2021), (Barton et. al., 2023) social networks (Li et. al., 2013) pattern recognition (Zhou 

et. al., 2006) Hypergraphs move beyond the pairwise comparisons given by graphs or networks 

and are designed to succinctly model higher-order relationships in complex, irregular data 

structures. The objective of the current article is to demonstrate hypergraph versatility and 

applicability in two distinct biological settings. The first involves differential gene expression data 

gathered to study a gravitropism trait in the Australian coastal plant Senecio lautus. The second 

involves plant microfossil data gathered from starch grains for species classification.  

Gravitropism is the specific response of plants to gravity, resulting in upright growth 

even when the orientation of the plant is perturbed. It is known that in Senecio lautus the 

gravitropic response varies between populations adapted to different environments. In sand dunes, 

Senecio lautus responds strongly to gravity, with plants growing tall and erect, while on headlands 

the response is weak or absent, with low, prostrate growth. An experiment was designed to study 

gravitropism, recording differential gene expression over a short time series (5 points) in the 

presence and absence of experimental treatment (Broad et. al., 2023). 

Using this data we may construct the hypergraph shown in Figure, with node set 

{𝐺4,5
𝐶 , 𝐺4,5

𝑇 , 𝐴4,5
𝐶 , 𝐴4,5

𝑇 }. These nodes represent data from time points 4 to 5 in the experimental 
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categories gravitropic (G) and agravitropic (A) and under the presence (T) and absence (C) of 

treatment, respectively. The closed curves represent hyperedges aligned with contrasts (gene 

expression patterns) seen across different experimental categories. In this example, a node is 

incident with a hyperedge if the given experimental category shows the required response with 

respect to the contrast of interest: hyperedges {𝐺4,5
𝐶 }, {𝐴4,5

𝑇 }, {𝐺4,5
𝐶 , 𝐴4,5

𝐶 , 𝐺4,5
𝑇 }, {𝐴4,5

𝐶 , 𝐺4,5
𝑇 , 𝐴4,5

𝑇 },

{𝐺4,5
𝐶 , 𝐴4,5

𝐶 , 𝐺4,5
𝑇 , 𝐴4,5

𝑇 }  of multiplicity 3, 11,  2, 1,  4, respectively. 

Figure 1: An Example Hypergraph on 4 Nodes, with 21 Hyperedges Incident with 1, 3 Or 4 

Nodes 

 

(Source: Authors’ Illustration). 

In the above example, the hyperedges can be expanded to cliques giving a dense complex network 

that records pairwise interactions but with much of the detail obscured. Summary statistics, such 

as node degree, shortest path lengths and node centrality, can help but we will show that much is 

obtained by applying these statistics in the hypergraph setting. 

In a second application, we construct a hypergraph model to compile a plant microfossil 

reference library for the classification of microfossils of unknown species. Here the data set records 

measurements taken from starch grains that grow between cells, (Coster & Field, 2015). Generally, 

immature grains are small and spherical, but over time crowding results in constrained growth and 

trait homogeneity is reduced across species. Shape metrics and supplementary Fourier signatures 

can be used to capture this differentiation and to formulate a hypergraph classifier that encodes 

higher-order relationships. One challenge that arises is the lack of encoding for grain maturity. 
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2. Methods 

We will briefly describe two distinct methods applied here and refer the reader to 

(Barton et. al., 2023) and (Barton et. al., 2024) for full details. Formally a hypergraph, 𝐻 = (𝑉, 𝐸) 

is given by a node set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}  and hyperedge set 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} , where 

hyperedges are subsets of the node set 𝑉 (Berge, 1984). A graph or network is a hypergraph where 

all hyperedges contain precisely 1 or 2 nodes. 

The first step in constructing a hypergraph, from a given data set, is to determine a list 

of conditions of interest that will act as nodes. Then if a condition (node v) is satisfied by a given 

data unit (hyperedge e), node v is included in hyperedge e. Recording “Yes”' as 1 and “No” as 0 

we obtain a Boolean sequence profiling the data unit (hyperedge) with respect to the list of 

conditions (node set 𝑉). An incident matrix, 𝐵 = [𝑏𝑖,𝑗], has the Boolean sequences as rows, one 

per node, where entry 𝑏𝑖,𝑗 = 1  if node 𝑣𝑖  is in hyperedge 𝑒𝑗 , otherwise 𝑏𝑖,𝑗 = 0 . Summary 

statistics are now accessible: row sums give the degree distribution (number of hyperedges 

incident with each node); column sums give the hyperedge size distribution (number of nodes in 

each hyperedge).  

These distributions are proxies for the number of experimental units that test positive 

for the conditions of interest and provide information on the topology of the hypergraph. For 

instance, scale-free hypergraphs have a small central hub of nodes of high degree exhibiting 

interactions with a large number of low-degree nodes. The s-intersection line graph identifies 

experimental units that concurrently satisfy s conditions of interest. It also gives access to 

centrality measures, e.g. closeness, betweenness and eigencentrality: high closeness indicates a 

hyperedge that is similar to other hyperedges (with respect to graph distance); higher than trend 

betweenness indicates a hyperedge that is similar in nature to at least two distinct classes of 

hyperedges; higher eigencentrality tends to indicate an “influential” hyperedge which has common 

elements with other “influential” hyperedges.  

 

2.1 A Hypergraph Model for Studying Differential Gene Expression 

In this study, we derived a list of hypergraph test conditions from experimental contrasts 

with respect to a threshold in differences for normalized (log transform) gene expression levels. 

The conditions were designed to test for differences in gene expression given a threshold. For 

example, “Given a gene, is there a two-fold difference in adjusted expression levels as measured 



LIFE: International Journal of Health and Life-Sciences  
ISSN 2454-5872 

25 
 

in the agravitropic control experiment (𝐴𝐶) and the gravitropic treatment experiment (𝐺𝑇) at time 

point 5.” In addition, given the large gene set with low rates of true expression difference, family-

wide false discovery rates were controlled by calibrating differences in expression levels against a 

significance criteria (adjusted p-value of less than 0.05).  Incorporating dispersion information 

from the full set of genes allowed for optimal estimates of variance, while still tailoring the p-value 

criteria to individual conditions of interest and single genes.  Summarizing, for a given gene and 

an experimental contrast, fold change and adjusted p-value scores were used to determine 

incidence in hyperedges. 

1. Input gene expression data and normalize with a log transform. Determine a list of hypergraph 

conditions, 𝐶1, … , 𝐶𝑚, aligned with experimental contrasts and determine adjusted p-values. 

2. Construct hypergraph H with nodes 𝐶1, … , 𝐶𝑚 (conditions) and hyperedge 𝑔𝑗 containing node 

𝐶𝑖 if gene 𝑔𝑗 satisfies condition 𝐶𝑖. 

3. Determine the degree and hyperedge size distribution from the incidence matrix and where 

possible, characterize the topology of the hypergraph, e.g. scale free. 

4. Construct the s-intersection line graph and determine closeness, betweenness and 

eigencentrality. 

5. Use the above to identify genes that show functional variation across experimental contrasts. 

 

2.2 A Hypergraph Algorithm to Classify Discrete Data Units 

In this study, we derived a hypergraph model to classify plant microfossils (starch 

grains) of unknown species by referencing a known library of microfossils. As mentioned earlier, 

environmental challenges are present: microfossils can range in maturity from early to fully 

developed, causing overlapping in measurements and creating significant variance, see (Coster & 

Field, 2015). The compounding of these issues can restrict the performance of classifiers. To meet 

these challenges, we have constructed a classifier that differentiates species by referencing main 

effects and multi-way interactions. The performance will be compared against a random forest 

classifier, a robust and accurate tool, (Breiman, 2001) (Díaz-Uriarte & Alvarez de Andrés, 2006). 

Fuzzy boundaries are introduced to account for data variance and are achieved through a 

population of hypergraph models that allow for variance across interval lengths and central values 

for classes. Sensitivity analysis is used to identify significant and remove irrelevant or redundant 

features, as per the literature (Dash & Liu, 1997). Incorporating this information into confidence 
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thresholds for the classification of unidentified starch grains can reduce false positives and 

negatives. The overall approach is summarized below with full details given in (Barton et. al., 

2024). 

1. Input microfossil feature measurement data, e.g. shape metrics, and Fourier signature, and 

normalize transforming units using p-values and z-scores, with mean zero and standard 

deviation one.  Label units by a standardized vector 𝑣𝑖 =  (𝑣𝑖1, … , 𝑣𝑖𝑚).   

2. Select population of model parameters, 𝑙 ∈  𝑈(0.2,1.5) and  𝛼 ∈ 𝑈(−0.5,0.5) from uniform 

distributions, and discretize the components of 𝑣𝑖to 𝑣_𝑖 =  (⌈
�̂�𝑖1−𝛼

𝑙
⌉ , ⋯ , ⌈

�̂�𝑖𝑚−𝛼

𝑙
⌉).  

3. Construct the hypergraph H, where the microfossils form the node set, and hyperedges are 

indexed by pairs (𝑗, 𝑡), where j is a feature and t is the associated discretized value. Then node 

i is incident with hyperedge (𝑗, 𝑡)  if and only if  𝑡 = 𝑣𝑖𝑗 . 

4. Repeat Steps 1, 2 and 3 generating probability distribution across features, their discretized 

classes and the population of models.   

5. Set a threshold, and only predict a species that occurs in the set percentage of class forecasts. 

That is, in the final selection process, the predicted class must be selected by at least k% of 

models, otherwise no prediction is made.  

6. Based on training data, use Steps 1 to 4 to create a reference library. Given an unknown 

microfossil 𝑣 use the probability distributions stored in the reference library to determine the 

most likely species, say s. If the prediction is above the threshold, say 𝑃(𝑝(𝑣  =  𝑠)  >  𝑘, 

predict species s for grain 𝑣. 

 

3. Results 

In both studies, the goal is to use hypergraphs to interrogate data and identify both 

general trends as well as outliers and other units of data that warrant further investigation. 

Understanding the associated abstract concepts is enhanced by contextualizing and interpreting 

them within the biological setting. 

First, gravitropic processes were studied through expression data gathered from 269,210 

candidate gene sequences (referred to as genes). The experiment involved rotating individual 

seedlings by 90° and determining expression levels at 5 time points. A more complete analysis of 

the study is given in (Barton et. al., 2023) Here we focus on a representative example, 



LIFE: International Journal of Health and Life-Sciences  
ISSN 2454-5872 

27 
 

demonstrating the strengths of centrality measures in hypergraphs as interrogation tools for a 

multi-dimensional dataset.  

As discussed in Methods, a list of conditions was nominated and tested to identify links 

between differential gene expression levels and the gravitropic response. This information was 

captured in hypergraph models and the associated s-intersection line graphs, with betweenness and 

eigencentrality scores emerging as key indicators of potentially significant genes.  

The data points in Figures 2 and 3 correspond to hyperedges or equivalently genes, with 

a natural 3-way partitioning of the gene pool emerging. Further, the eigencentrality scores (Figure 

3) provide a much clearer delineation into four distinct gene classes 𝑃1, 𝑃2, 𝑃3 and 𝑃4, allowing 

us to distinguish genes based on key conditions. The betweenness centrality scores (Figure 2) allow 

us to identify genes of interest within each class, highlighting possible gene associations. The full 

biological significance of results is discussed in (Barton et. al., 2023) but for now, let us consider 

the two outlier genes with high centrality and degree (number of contrast/conditions satisfied) seen 

in Figure 2. Investigations suggest that these are the ubiquitin gene and a polyubiquitin gene with 

functions related to vegetative growth, auxin signaling and ethylene production. 

Interestingly, betweenness does not correlate strongly with degree, and it does not 

differentiate the four classes. However, it does identify outlier genes, for instance, in class 𝑃1 (with 

a small degree). This node represents the gene that was annotated to the A.thaliana shaggy-like 

kinase group 2 (AtSK2-2), also known as brassinosteroid insensitive 2-like. This gene shows 

strong differentiation across three distinct experimental contrasts/conditions as well as some 

commonality with a large number of other genes. Biologically, it is known that this gene is 

associated with the brassinosteroid-mediated signaling pathways and related to light-regulated 
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hypocotyl elongation and multiple stress responses including responses to drought, see (Barton et. 

al., 2023).  

 

  

In the second study, the hypergraph classifier was tested on a relatively small dataset of 944 starch 

grains from seven distinct species, with each grain calibrated against 16 morphological features: 

the 5 shape metrics: length, area, perimeter, circularity, hilum position, and 11 Fourier coefficients. 

The small number of data units and the environmental challenges did impact performance; 

however, results show that the proposed hypergraph classifier performs well when compared to a 

random forest classifier.  

Figure 2: The Betweenness and Degree 

Scores for the Hypergraph Model 

 (Source: Authors’ Illustration) 

  

Figure 3: The Eigencentrality and Degree 

Scores for the Hypergraph Model 

  (Source: Authors’ Illustration) 
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Figure 4 summarizes accuracy and standard error (shaded regions) for three hypergraph 

models (main effects only 𝐻1  including 2-way interactions 𝐻2, including 3-way interactions 𝐻3) 

and a random forest classifier (RF). The hypergraph results are mapped against increases in the 

size of the hypergraph population. Overall 𝐻3 achieves an accuracy score of 0.5601 and a standard 

error of 0.0097, while the random forest classifier achieves a slightly lower accuracy score of 

0.5471 with a standard error of 0.0092. For this type of study, and given the specific challenges 

mentioned earlier, this is quite a respectable result especially when benchmarked against the 

random forest algorithm. 

Leave one out sensitivity analysis of features is reported in Figure 5 (green main effects and red 

2-way interaction models) with horizontal lines indicating overall accuracy. Little is gained by 

removing features from the 𝐻2 model, however, the removal of the Circularity data (Feature 4 in 

Figure 5) markedly reduces the performance in both models, suggesting that circularity is a good 

classifier despite the uncertainty in the measurement of immature grains. Not surprisingly, 

removing the early Fourier coefficients also impacts on accuracy. 

Figure 4: Accuracy Scores across 

Different Hypergraph Population Sizes, 

with Shaded Regions Indicating a 

Standard Error 

  (Source: Authors’ Illustration) 

Figure 5: Adjusted and Original Accuracy 

Scores for the 𝐻1 and 𝐻2 Algorithms. 

Feature Selection Refers to Which Feature 

is removed, with the Label Coming from 

(Barton Et. Al., 2024) 

 (Source: Authors’ Illustration) 
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 To further address the uncertainty introduced by immature spherical grains, we 

implemented a decision threshold that leaves some starch grains unclassified. Indeed, Figure 6 

indicates that performance is improved by suppressing some information and reducing 

homogeneity in the training data; the 𝐻2-algorithm continues to outperform the 𝐻1-algorithm 

although the difference drops moderately for higher thresholds. Increasing the threshold also 

increases the number of unclassified grains. Figure 7 illustrates this trade-off. For thresholds up to 

40%, most grains in this dataset can still be classified. When the threshold is increased to 70%, the 

fraction of classified grains reduces to approximately 0.4 and drops off with almost all grains 

unclassified for close to 100% accuracy.  

This approach minimizes the rate of both false positives and false negatives and 

maximizes the rate of both true positives and true negatives (Table 3.2). The hypergraph model 

also allows us to rule out unlikely species for an unclassified grain. This is valuable information 

for immature spherical starch grains, where the inability to identify the specific species with high 

accuracy is often unavoidable. 

Figure 6 displays results on the average number of species eliminated across different threshold 

values, showing that even at the highest threshold value considered we can eliminate over half of 

species from predictions on average. The threshold can be chosen to achieve a target accuracy for 

Figure 6: The accuracy scores (solid 

lines) and the ratio of species excluded 

(dashed lines) for different threshold 

values when using the class prediction 

technique for the 𝐻1 and 𝐻2 algorithms 

 

(Source: Authors' Illustration) 

Figure 7: The accuracy of the 𝐻3 

algorithm (red) and the percentage of 

units classified (blue) across decision 

threshold values 

 (Source: Authors’ Illustration) 
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ruling out unlikely species (Table 3.1 A threshold value of around 0.5 will give 90% accuracy with 

respect to the number of species ruled out and around 0.65 gives 95% accuracy.  

Table 3.1 The minimum threshold required to achieve given accuracy for each algorithm 

and the number the species ruled out  

 

Accuracy Algorithm Threshold Number of Species Ruled Out 

90% 𝐻1 0.5 3.8313 

90% 𝐻2 0.52 4.14 

95% 𝐻1 0.65 2.8038 

95% 𝐻2 0.66 3.3 

(Source: Authors’ Calculations) 

Full details on the performance of the classifiers including confusion matrices are given in 

(Barton et. al., 2024) Here Table 3.2 shows the performance of three classifiers across the species: 

𝐻3(75) with a threshold of 75%, 𝐻3 and without a threshold, and a random forest (RF). True 

positive and false negative rates are defined as proportions of the specified class, while false 

positive and true negative rates are proportions of all data excluding the class. For each of the four 

rates, 𝐻3(75) outperforms the other classifiers across most species. 

Table 3.2 True and false positive and negative rates for each classifier RF, 

 𝑯𝟑 𝑎𝑛𝑑 𝑯𝟑(𝟕𝟓). The best result in each case is displayed in bold.  

Species/Algorithm RF: 𝑯𝟑: 𝑯𝟑(𝟕𝟓) 

 False Negative False Positive True Positive True Negative 

Dysphania kalpari (DK) 16.1:7.3:5 6.4:8.9:11.6 83.9:92.7:95 93.6:91.1:88.4 

Acacia aneura (AA) 45:21:7.6 6:7.7:8.2  55:79:92.4 94:92.3:91.8   

Acacia victoriae (AV) 62.6:53.7:55.2  7.9:8.9:5.5 37.4:46.3:44.8 92.1:91.1:94.5 

Brachiaria miliiformis BM) 48.5:41:23.3  9.7:10.5:7.7 51.5:59:76.7 90.3:89.5:92.3 

Eragrostis eriopoda (EE) 57.7:71.4:77.6  8.4:5.1:1.3 42.3:28.6:22.4 91.6:94.9:98.7   

Yakirra australiensis (YA) 44.4:52.8:40.3 6.6:5.1:0.9 55.6:47.2:59.7 93.4:94.9:99.1 

Brachychiton populneus (BP)  43.7:48.5:41.6  8.4:5:4.8 56.3:51.5:58.4 91.6:95:95.2 

(Source: Authors’ Calculations) 
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4. Conclusions 

This article explores the application of hypergraph models in two distinct biological 

settings, demonstrating that hypergraphs have the potential to create flexible models that can be 

generalized to other datasets. By taking the novel approach of working over populations of models, 

rather than a single model, there is a potential to reduce biases and overfitting. Both these facts 

suggest the need for future studies that apply hypergraph to a wider class of biological systems 

thus harnessing their potential to improve understanding of the physical processes. 

In addition, greater emphasis needs to be placed on developing an understanding of the 

setting of thresholds and the selection of features through probability distribution analysis. 

In conclusion, it has been demonstrated that hypergraph models provide a foundation 

for exploring multi-way interactions within datasets, while populations of hypergraphs provide a 

robust framework for the classification of unseen data units for complex datasets. 
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