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Abstract 

The  nonlinear  Schrödinger  (NLS)  equation  models  wave  dynamics  in  many  

physical problems related to fluids, plasmas, and optics. The standing periodic waves are 

known to be modulationally unstable and rogue waves (localized perturbations in space 

and time) have been observed on their backgrounds in numerical experiments. The 

exact solutions for rogue waves arising on the periodic standing waves have been 

obtained analytically. It is natural to ask if the rogue waves persist on the standing 

periodic waves in the integrable discretizations of the integrable NLS equation. We study 

the standing periodic waves in the semidiscrete integrable system modeled by the high-

order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL 

equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are 

obtained by using the separation of variables and one-fold Darboux transformation. 

Since the cnoidal wave is modulationally unstable, the rogue waves generated on the 

periodic background. 
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Ablowitz-Ladik Equation 

 

Introduction 
 

Rogue waves have gained more and more attention recently [1]. In order to 

construct rogue waves on the periodic background, Chen and Pelinovsky first combine the 

nonlinearization of spectral problem with the Darboux transformation method [2], and 

then by using these two approaches, rogue waves on the periodic background have been 

obtained for the NLS equation [3, 4], mKdV equation [2, 5], derivative NLS equation 

[6, 7], sine-Gordon equation [8] and discrete mKdV equation [9, 10]. 

Two families of periodic wave solutions of NLS equation are constructed by 

the Jacobi elliptic functions [3] and modulational stability of these solutions with respect 

to long pertur- bations was studied in [11], where it was concluded that the dnoidal and 

cnoidal waves are modulationally unstable, rogue waves generated on the periodic 

background. Recently, they generalized this results to the Ablowitz-Ladik equation and 

investigated modulational stability of the standing periodic waves and obtained similar 

results [12] 

In this paper, we consider the high-order AL equation in the following form 

 
u̇ n =i(1 + |un|2)[(1 + |un+1|2)un+2 + (1 + |un−1|2)un−2 + ū n(u2 

 
2 
n+1 

) + un(ū n−1un+1 + 

un−1ū n+1)], n ∈ 

Z, 

n−1 
(1.1)

+ u 
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V 

n 

n−1 

n 

n 

we construct new solutions on the periodic background of the equation (1.1) by 

combining the separation of variables and the Darboux transformation method.  First, by 

using the separa- tion of variables, we obtain the forth-order difference equation and then 

we specify the exact expressions between the squared eigenfunctions and the standing 

periodic wave solution which is expressed by cnoidal elliptic function. Second, the 

cnoidal standing periodic wave can be obtained from the fourth-order difference 

equation. Finally, one-fold Darboux transformation can be used to construct the rogue 

waves generated on the cnoidal wave background. 

The article is organized as follows. In section 2, we give details of the 

periodic squared eigenfunctions of high-order AL equation spectral problem related to 

the cnoidal elliptic func- tion. In section 3, we compute the standing periodic wave given 

by cnoidal elliptic function. In section 4, we compute the second, linearly independent 

solution of the Lax equations. We con- struct the rogue waves generated on the cnoidal 

wave background using the one-fold Darboux transformations in sections 5. Section 

6 gives the conclusion. 

 

The Separation of Variables 

 

The equation (1.1) can be represented as the compatibility condition for the 

following Lax pair of linear equations 

 
ψ = U 1 ψ , U  = √ 

  
λ

 un 

! 

, (2.1) 

 

 
and 

n+1 n   n
 n 1 + |un|2 −ū n λ−1 

 

 

 

where 

 

ψ̇ n  = Vnψn, Vn = 

i 

 
11 12 
n n 

21 −V 
11 

! 

, (2.2) 

V 11 1
 4 
  

−4) + ū  u λ2 + u ū   λ−2 1 2 u2 + 
u2 
  

ū 2 

n  = 
2 

(λ  + λ n−1  n n−1  n + 
2 

[ū n−1    n 
n−1  n 

+(1 + |un−1 |2)(ū n−2un + un−2ū n) + (1 + |un|2)(ū n−1un+1 + 

un−1ū n+1)], V 12 =λ3un + λ[ū n−1u2  + (1 + |un|2)un+1] − λ−3un−1 n n 

−λ−1[u2 ū n + (1 + |un−1 |2)un−2], 
V 21 = − λ3ū n−1 − λ[ū 2 un + (1 + |un−1 |2)ū n−2] + λ−3ū n 
n n−1 

+λ−1[un−1ū 2  + (1 + |un|2)ū n+1]. 

 

We consider the standing wave solution of the equation (1.1) in the form 

 

un = Une
2iωt,

 (2.3

) 

where Un is the real periodic function and ω is a real parameter. 

  
V

 

V 
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Substituting (2.3) into the high-order AL equation (1.1), we obtain the forth-order 

difference equation 
(1 + U 2)[(1 + U 2 )Un+2 + (1 + U 2 

)Un−2 + Un(U 2 
+ U 2 ) 

n
 n
+1 

n−1 n−1 n+1 (2.4) 

+ 2Un−1UnUn+1] = 2ωUn, n ∈ Z. 

Let us separate the variables for solutions ψn = (pn, qn)
T  of the Lax equations (2.1) 

and (2.2) 

 

pn = Pn(t)e
iωt, qn = Qn(t)e

−iωt. (2.5) 
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n 

n 

n−1 n−1 

n−1 

n−1 

n 

1 + U 2 −Un λ−1 

n n 

and 

Substituting (2.3) and (2.5) into the Lax equations (2.1) and (2.2), we obtain the 

following Lax 
equations 

   
Pn+1 

 
 

 

! 

= √ 
1

 

  
λ

 Un 

 
 

!  
Pn

 

 
 

! 

, (2.6) 

d  
     

Pn 

! 

=i 

  
Ṽ 

11 
 
 

˜ 12 
n 
 
 

!  
Pn

 
! 

, (2.7) 

where 
dt
 Q
n 

˜ 21 n −Ṽ 11 Qn 

Ṽ 11 1
 4 
  

−4) + U U (λ2 + λ−2) + U 2 U 2 + U U  (1 + U 2 ) 

n  = 
2 

(λ  + λ n−1   n n−1   n n−2   n n−1 

+Un−1Un+1(1 + U 2) − ω, 
Ṽ 12  =λ3Un + λ[Un−1U 2 + (1 + U 2)Un+1] − λ−3Un−1 
n n n 

−λ−1[U 2 Un + (1 + U 2 )Un−2], 
Ṽ 21  = − λ3Un−1 − λ[U 2 Un + (1 + 
U 2 

)Un−2] + λ−3Un 

n n−1 

+λ−1[Un−1U 2 + (1 + U 2)Un+1]. 

n−1 

 

Lemma 1 Let Un be a solution of the forth-order difference equation (2.4). 

The real-valued quantities 

F1 = 2(Un−2Un + U 2 U 2 + Un−1Un+1 + Un−1U 2Un+1 
+ Un−2U 2 

Un)ω 

n−1  n 
2 2 2 2 

n 
2     2 4     2 

n−1 
4 4 2 4 

— Un−2 − Un−1 − Un − Un+1 − 2UnUn+1 − UnUn+1 − Un−1Un  − Un−1Un 
4 2 2 2 2 2 2 2 2 4 2 2 

— Un−1Un − 2Un−1Un  − Un−2Un  − Un−1Un+1  − Un−2Un−1  − 2Un−2Un−1 
2 4     2 3 4 4 3 2 

— Un−1UnUn+1   − 2Un−1UnUn+1   − 2Un−1UnUn+1   − 2Un−1UnUn+1 
2 4 3 2 2     2 2 3 

— 2Un−1UnUn+1   − 2Un−2Un−1Un   − 2Un−1UnUn+1   − 2Un−2Un−1Un 
2 4 2 2 2 2 4 2 

— Un−2Un−1Un   − 2Un−2Un−1Un   − 2Un−2Un−1Un  − 2Un−2Un−1Un 
3 3 

— 2Un−2Un−1UnUn+1    −  2Un−2Un−1UnUn+1    −  2Un−2Un−1UnUn+1 
3 3 
 

and 

— 2Un−2Un−1UnUn+1, 

F2  = 2ωUn−1Un − U 3Un+1 − UnUn+1 − Un−1Un − U 3 U 3 − Un−1U 3 
n n−1   n n 
3 3 2 3 

— Un−1Un + Un−2Un+1 − Un−2Un−1 − Un−2Un−1 − Un−1UnUn+1 
2 2 3 2 2 

— Un−1UnUn+1 + Un−2UnUn+1 − Un−2Un−1Un − Un−2Un−1Un 

+ Un−2U 2 Un+1 + 

Un−2U 2 

U 2Un+1. 

are independent of n ∈ Z. 

Proof : It is easy to verify that (E − 1)Fi = 0, i = 1, 2, where we use  the  

following  shift operators 

E(ψn) = ψn+1, E
−1(ψn) = ψn−1. 

n V 

Qn 
n 

Qn+1 

V 
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Proposition 2 If the Lax equations (2.6) and (2.7) are solved with the 

separation of variables as 

Pn(t) = P̃neΩt, Qn(t) = Q̃neΩt, (2.8) 

where  (P̃n, Q̃n)T   is  t-independent,  then  the  spectral  parameters  Ω  and  λ  are  related  

by  the algebraic equation 

Ω2 + P (λ) = 0, (2.9) 
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V + iΩ 

n 

. n 

q 

ω = 
2 

(λ1 + λ1   ) + σ1 F1 + (λ1 + λ1    )F2, σ1 = ±1. (2.11) 

1 n−1 n−1 

1 n n 

1 1 

2 

1 1 

2 

n−1 n 

1 1 n−1 n−1 

1 

!   

. 

where  
P (λ) =
 (λ
8 

4 

 

+ 

λ−8 
) − ω(λ 

 

+ 

λ−4 
) − F2(λ 

 

+ 

λ−2 
) − F1 + 

ω 

 
1 
+ .
 (2.10) 
2 

Proof : Substituting (2.8) into the time-evolution problem (2.7), we obtain a linear 

algebraic system 
˜ 11 

i n 
˜ 21 
n 

˜ 12 
n 

−Ṽ 11  + iΩ 

P̃n 

Q̃n 

! 

= 0, 

which admits a nonzero solution if and only if the determinant of the coefficient matrix is 

zero 

 

Ṽ 11  + iΩ 

 
 

˜ 12 
n 

 

. 
= 0. 

˜ 21 n −Vn  + iΩ  . 

Expanding the determinant yields the algebraic equation in the form (2.9) and (2.10), 

which completes the proof. 

 

Proposition 3 Let λ1 ∈ C be a root of the polynomial P (λ) in (2.10) and define 

1 4 −4 
q 

2 −2 

 

Then, the eigenfunction (Pn, Qn)
T of the Lax equations (2.6) and (2.7) with λ1 is given 

by 

P 2 =λ3Un + λ1[Un−1U 2 + (1 + U 2)Un+1] − λ−3Un−1 
n 1 

— λ−1[U 2 

n 

Un + (1 + U 
2 

n 1 

)Un−2], 
(2.12) 

Q2 = λ3Un−1 + λ1[U 2 Un + (1 + U 2 )Un−2] − λ−3Un 
n 1
 n−1 

n−1 1 (2.13) 

— λ−1[Un−1U 2 + (1 + U 2)Un+1], 

and    

PnQn =σ1 F1 + (λ2 + λ−2)F2 − Un−1Un(λ
2 + λ−2) − U 2 U 2 

— Un−2Un(1 + Un−1) − Un−1Un+1(1 + Un). 

Proof :   The relation (2.11) is given by solving P (λ1)  =  0 in ω. Since the 

root of P (λ) corresponds to Ω = 0, it follows from (2.7) that Pn and Qn are related by 

1 4
 −4 
  

2 −2 2 2 2 

[ 
2 

(λ1 + λ1   ) + Un−1Un(λ1 + λ1    ) + Un−1Un + Un−2Un(1 + Un−1) 
+ Un−1Un+1(1 + U 2) − ω]Pn + [λ3Un + λ1[Un−1U 2 + (1 + U 2)Un+1] 
n 1 n n 

— λ−3Un−1 − λ−1[U 2 Un + (1 + U 2 )Un−2]]Qn = 0. 

 

Multiplying this relation by Pn and by Qn verifies the relations (2.12)-(2.14) with the 

help of relations (2.11), which completes the proof . 

 

˜ 11 

V 

V 

V 

V 

(2.14) 

4 2 2 
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1.  Cnoidal Standing Periodic Wave 

 

There exists the exact standing periodic wave solution of the fourth-order difference 

equa- tion (2.4) in the form of the Jacobi cnoidal elliptic function 

 

Un(t) = Acn(αn, k),

 (3.1

) 
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— − 

  

− − 

   

−

 

n n n n n n n 

n n n 

n n n n n n 

n n 

where α ∈ (0, 2K(k)), k ∈ (0, 1) are arbitrary 

parameters. Substituting (3.1) into (2.4), we obtain 

 

ksn(α, k) 
A = , ω 
= 
dn(α, k) 

1 + 2(k2 1)sn2(α, k) k2sn4(α, k) 

dn4(α, k) 
. (3.2)

 

 

Considering the conserved quantity F1 and F2 at αn = 0 yields 

F  =
 1 

(   8k2 + 8k4)sn4(α, k) + (8k2 8k4)sn6(α, k) 
1 dn8(α, k) 

+ (k4 − 2k6 + k8)sn8(α, k)

 

, 
 

(3.3) 

F  =
 1 

4k2(k2 1)sn4(α, k)cn(α, k) . 
2 dn6(α, k) 

 

Substituting (3.2) and (3.3) into (2.11), we obtain 
q
(1 − ksn(α, k))(cn(α, k) + i

√
1 − k2sn(α, k)) 

  

 

 

 
(3.4) 

λ1 = 
dn(α, k) 

, σ1 = +1.
2.

2.  Nonperiodic solution of the Lax equations 

 

  The following lemma presents the nonperiodic solution of the Lax equations (2.6) 

and (2.7) for the eigenvalue λ1. 

Lemma 4 Let (Pn, Qn)
T  be a solution to the Lax equations (2.6) and (2.7) 

for the eigenvalue λ = λ1 given  by  roots  of  the  polynomial  P (λ). The  second,  linearly  

independent  solution (P̂n, Q̂n)  of  the  Lax  equations  (2.6)  and  (2.7)  with  the  same  

eigenvalue  λ = λ1  is  denoted  by 

 

P̂n = Pnθn − 
Q̄ n 

, |Pn|2 + |Qn|2 

 

Q̂n 

 

= Qnθn 

+ 

P̄ n 
|P |2 + 

|Q|2 

 

, (4.1) 

n n 

where 
(|λ1 |2  − 1)(λ̄ 1UnP̄ 2  − λ1UnQ̄ 2  − (1 + |λ1 |2)P̄ nQ̄ n) 
 

where 
θn+1 − θn = 

Υ
 

, (4.2) 

Υn = |λ1 |4P 2P̄ 2  + |λ1 |2U 2P 2P̄ 2  + |λ1 |2λ1UnP 2P̄ nQ̄ n  − λ1UnP 2P̄ nQ̄ n 

+ |λ1 |2λ̄ 1UnP̄ 2PnQn − λ̄ 1UnP̄ 2PnQn + |λ1 |4P̄ nQ̄ nPnQn + 2|λ1 |2U 2P̄ nQ̄ nPnQn 
+ P̄ nQ̄ nPnQn + |λ1 |2λ̄ 1UnP̄ nQ̄ nQ2  − λ̄ 1UnP̄ nQ̄ nQ2  + |λ1 |2λ1UnPnQnQ̄ 2 
n n n 

— λ1UnPnQnQ̄ 2  + |λ1 |2U 2Q2 Q̄ 2  + Q2 Q̄ 2 , 

 

and  

θn,t = i.

 (4.3

) 
 

n 
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Proof : Substituting (4.1) into (2.6) and (2.7), after long but straightforward 

computations, we have simplified the expression to the form (4.2) and (4.3). 

Remark 1  It follows from (4.2) and (4.3) that θn(t) = Θn + it, where the t-

independent Θn(t) 

is obtained from the difference equation (4.2). 
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n 

1 

n 

ˆ  ˆ 

1 1 

Tn    = √
−a

 

1 1 1 1 

1 n n n n n n n n n n 

n n n n n n n 

n n n n n 

3.  Rogue Waves on the Cnoidal Wave Background 

 

     The following lemma presents the one-fold Darboux transformation for the high-

order AL equation (1.1). 

Lemma 5 Let ψn = (pn, qn)
T for the  eigenvalue  λ1  be  a  solution  to  the  Lax  equations  

(2.1) and (2.2) pertinent to the spectral un(t) of the equation (1.1), then 

λ1(1 − |λ1 |4)pnq̄ n − (|λ1 |2|pn|2  + |λ1 |4|qn|2)un 
ûn = 

λ̄ 2(|λ  |2|p |2 + |q |2) 
, (5.1) 

is  a  new  solution  of  the  equation  (1.1)  and  

ψ̂n 

= T 

[1]
ψn

 
is a new solution to the Lax 

equations 

(2.1) and (2.2) with arbitrary λ, where 

 

 

[1] 

    1 λ + anλ
−1 bn 

!
 

 

 

with 

 
λ1(|λ1|2|pn|2  + |qn|2) 
  

 
λ1(1 − |λ1 |4)pnq̄ n 
  

an = − 
λ̄

 (|p

n 

|2 + 

|λ1|2|qn 
|2) 

, bn = 
|λ |2(|p |

2 + 

|λ1|2|qn 
|2) 

.
 

Proof : By using Wolframs Mathematica symbolic computations, it is easy to verify 

that T [1] 
satisfies Darboux equations 
Û T 

[1] 
= T [1] 

U
 

and V̂  T [1] = T [1] + T [1]V  . 

n  n n+1  n n   n n,t n n 

 

Remark 2 For cnoidal wave (3.1), substituting (2.3) and (2.5) into the one-fold 

Darboux transformation (5.1), we get 

 

with 

ûn = Ûne2iωt, (5.2) 

ˆ λ1(|Pn |2  + |λ1 |2|Qn |2)Un λ1(1 − |λ1 |4)PnQ̄ n 
Un = − 

λ̄   (|λ  |2|P |2 + |Q |2) 
+ 

λ̄ 2(|λ  
|2|P 

|2 + |Q |2) 
. (5.3) 

Substituting (5.1) into (5.3), we get the rogue wave solution to the equation (1.1) in 

the analytic form 

λ1(|P̂n|2  + |λ1 |2|Q̂n|2)Un 
  

λ1(1 − |λ1|4 n 
¯
n Θ1 

 
ûn = −  

¯
 2  ˆ  2 + ˆ   2 ¯2 )P Q 2   ˆ  2 ˆ   2 , 

Θ  
, (5.4) 

 
where 

λ1(|λ1| |Pn| + |Qn| ) λ1(|λ1| |Pn| + |Qn| ) 2 

Θ2 = λ̄ 2
 

[|λ1 |2P̄ 2(P 2P̄ 2PnQn + 2P 2Q2 P̄ nQ̄ n  + Q2 Q̄ 2 PnQn) + Q2 (P 

2P̄ 2P̄ nQ̄ n 

+ 2P̄ 2Q̄ 2 PnQn + Q2 Q̄ 2 P̄ nQ̄ n)]|θn |2  + (1 − |λ1 |2)[Q2 (P 2P̄ 2  + PnQnP̄ nQ̄ n)θn 

+ P̄ 2(PnQnP̄ nQ̄ n  + Q2 Q̄ 2 )θ̄ n] + |λ1 |2Q2 P̄ nQ̄ n  + P̄ 2PnQn

 

, 

n n 

n −b̄ n λ−1 + ā n λ , 

n n n n 

1 
n 
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n n n n n n n n 

n n n n n n 

n n n n n n n n n n 

n n n n n n n 

n n n n n 

Θ1 = λ1(1 − |λ1 |4)[(P 2P̄ 2PnQnP̄ nQ̄ n  + 2P 2P̄ 2Q2 Q̄ 2  + Q2 Q̄ 2 PnQnP̄ nQ̄ n)|θn |2 

+ P 2(P̄ 2PnQn + Q2 P̄ nQ̄ n)θn − Q̄ 2 (P̄ 2PnQn + Q2 P̄ nQ̄ n)θ̄ n  − PnQnP̄ nQ̄ n] 

— |λ1 |2
 

[P̄ 2(P 2P̄ 2PnQn + 2P 2Q2 P̄ nQ̄ n  + Q2 Q̄ 2 PnQn) + |λ1 |2Q2 (P 2P̄ 2P̄ nQ̄ n 

+ 2P̄ 2Q̄ 2 PnQn + Q2 Q̄ 2 P̄ nQ̄ n)]|θn |2  + (|λ1 |2  − 1)[Q2 (P 2P̄ 2  + PnQnP̄ nQ̄ n)θn 

+ P̄ 2(PnQnP̄ nQ̄ n  + Q2 Q̄ 2 )θ̄ n] + Q2 P̄ nQ̄ n  + |λ1 |2P̄ 2PnQn

 

Un. 
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4 

and P 2, Q2 and PnQn are given by (2.12),(2.13) and (2.14). 
n n 
Figure 1 shows that when we choose α = K(k) and k = 0.999, the solution surface of 

the 

rogue wave solutions (5.4) arising on the cnoidal wave (3.1) for the eigenvalue λ1 given by 

(3.4). 

 

 

 

Figure 1: The solution surface for the rogue wave solutions arising on the background 

of the cnoidal wave with α = K(k)/4 and k = 0.999. 

 

4.  Conclusion 

 

In this paper, we construct the exact solutions for the high-order AL 

equation. Since the cnoidal periodic wave is modulationally unstable, we use the one-

fold Darboux transformations to construct the rogue wave solutions arising on cnoidal 

wave background. 
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